Problem sets 6 : Determinants

CEDC102: Linear Algebra and Matrix Theory

Manara University
2023-2024

Problem 1. If the entries in every row of A add to zero, solve $A x=0$ to prove $\operatorname{det} A=0$. If those entries add to one, show that $\operatorname{det}(A-I)=0$. Does this mean $\operatorname{det} A=1$?

Problem 2

The n by n determinant C_{n} has 1 's above and below the main diagonal:

$$
C_{1}=|0|, C_{2}=\left|\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right|, C_{3}=\left|\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right|, C_{4}=\left|\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right|
$$

(a) What are these determinants $C_{1}, C_{2}, C_{3}, C_{4}$?
(b) By cofactors find the relation between C_{n} and C_{n-1} and C_{n-2}. Find C_{10}.

Problem 3
Compute the determinants of

$$
A=\left[\begin{array}{llll}
1 & a & 0 & 0 \\
0 & b & 0 & 0 \\
0 & c & 1 & 0 \\
0 & d & 0 & 1
\end{array}\right], \quad B=\left[\begin{array}{cccc}
1 & a & a^{2} & a^{3} \\
a & 1 & a & a^{2} \\
a^{2} & a & 1 & a \\
a^{3} & a^{2} & a & 1
\end{array}\right]
$$

Problem 4 This problem shows in two ways that $\operatorname{det} A=0$:

$$
A=\left[\begin{array}{ccccc}
x_{11} & x_{12} & x_{13} & x_{14} & x_{15} \\
x_{21} & x_{22} & x_{23} & x_{24} & x_{25} \\
0 & 0 & 0 & x_{34} & x_{35} \\
0 & 0 & 0 & x_{44} & x_{45} \\
0 & 0 & 0 & x_{54} & x_{55}
\end{array}\right]
$$

(a) How do you know that the rows are linearly dependent?
(b) Explain why all 120 terms are zero in the big formula for $\operatorname{det} A$.

حَــامعة الـَـــنارة

Problem 5

If a 4×4 matrix has $\operatorname{det} A=\frac{1}{2}$, find $\operatorname{det}(2 A), \operatorname{det}(-A), \operatorname{det}\left(A^{2}\right)$, and $\operatorname{det}\left(A^{-1}\right)$.

Problem 6

True or false (give a reason if true or a 2×2 counter-example if false), using the properties of determinants. A and B are square matrices.
(a) If A is not invertible then $A B$ is not invertible.
(b) The determinant of \boldsymbol{A} is always the product of its pivots.
(c) $\operatorname{det}(A-B)$ always equals $\operatorname{det}(A)-\operatorname{det}(B)$.
(d) $A B$ and $B A$ must have the same determinant.

Problem 7

(a) If Q is a unitary matrix, from the properties of determinants explain why $\operatorname{det} Q$ must be \qquad or \qquad .
(b) If P is a $\mathbf{3} \times \mathbf{3}$ projection matrix onto a 2 d subspace, then explain why its determinant must be \qquad .
(c) If A is a 5×5 matrix that is anti-symmetric $\left(A^{T}=-A\right)$, then explain why its determinant must be \qquad -

