Lecture 10

(BJT MODELING) الدارات المكافئة DR.BASSAM ATIEH

How Amplifiers Work

Small-Signal Amplifier
Operation

BJT Transistor Modeling

جَــامعة
الـمـنارة

- A model equivalent circuit that represents the AC characteristics of the transistor. - A model uses circuit elements that approximate the behavior of the transistor.
- There are two models commonly used in small signal AC analysis of a transistor:
$-r_{e}$ model
- Hybrid equivalent model

The re Transistor Model

- BJTs are basically current-controlled devices; therefore the \mathbf{r}_{e} model uses a diode and a current source to duplicate the behavior of the transistor. - One disadvantage to this model is its sensitivity to the DC level. -This model is designed for specific circuit conditions.

Common-Base Configuration

$\mathbf{I}_{\mathbf{c}}=\alpha \mathbf{I}_{\mathrm{e}}$

Input impedance:

$\mathbb{Z}_{\mathbf{i}}=\mathbf{r}_{\mathbf{e}}$

Output impedance: $\mathbf{Z}_{\mathbf{o}} \cong \infty \Omega$

Voltage gain:

$$
A_{V}=\frac{\alpha \mathbf{R}_{\mathbf{L}}}{\mathbf{r}_{\mathbf{e}}} \cong \frac{\mathbf{R}_{\mathbf{L}}}{\mathbf{r}_{\mathbf{e}}}
$$

Current gain:

$$
\mathbf{A}_{\mathbf{i}}=-\alpha \cong-1
$$

Common-Emitter Configuration

جَــامعة الـمــنارة

$$
\boldsymbol{I}_{e}=(\beta+1) \boldsymbol{I}_{b} \cong \beta \boldsymbol{I}_{b}
$$

Input impedance:

$$
\mathbf{Z}_{\mathbf{i}}=\beta \mathbf{r}_{\mathbf{e}}
$$

Output impedance:

$$
\mathbf{Z}_{\mathbf{o}}=\mathbf{r}_{\mathbf{o}} \cong \infty \Omega
$$

Voltage gain:
The diode r_{e} model can be replaced by the resistor r_{e}.

$$
\mathbf{r}_{\mathbf{e}}=\frac{26 \mathrm{mV}}{\mathbf{I}_{\mathbf{e}}}
$$

$$
\mathbf{A}_{\mathbf{V}}=-\frac{\mathbf{R}_{\mathbf{L}}}{\mathbf{r}_{\mathbf{e}}}
$$

Current gain:

$$
\mathbf{A}_{\mathbf{i}}=\left.\boldsymbol{\beta}\right|_{\mathrm{r}_{\mathrm{o}}=\infty}
$$

The Hybrid Equivalent Model

- $\mathbf{h}_{\mathbf{i}}=$ input resistance
- $\mathbf{h}_{\mathrm{r}}=$ reverse transfer voltage ratio $\left(V_{i} / V_{0}\right) \cong 0$
- $\mathbf{h}_{\mathrm{f}}=$ forward transfer current ratio ($\mathbf{I}_{0} / \mathbf{I}_{\mathbf{i}}$)
- $\mathbf{h}_{\mathbf{0}}=$ output conductance

Simplified General h-Parameter Model

- hi = input resistance
- hf = forward transfer current ratio (Io/Ii)

Common-Emitter

The input is applied to the base
The output is from the collector
High input impedance
Low output impedance
High voltage and current gain
Phase shift between input and output is 180°

Common-Emitter
 Fixed-Bias Calculations

Common-Emitter Voltage-Divider Bias

r_{e} model requires you to determine β, r_{e}, and r_{0}.

Common-Emitter Voltage-

 Divider Bias Calculations

Input impedance:

Output impedance:

Voltage gain:

$$
A_{v}=\frac{\mathbf{V}_{\mathbf{0}}}{\mathbf{V}_{\mathbf{i}}}=\frac{-\mathbf{R}_{\mathbf{C}} \| \mathbf{r}_{\mathbf{0}}}{\mathbf{r}_{\mathrm{e}}}
$$

$$
A_{v}=\frac{V_{\mathbf{o}}}{V_{i}} \cong-\left.\frac{R_{C}}{r_{e}}\right|_{r_{0} \geq 10 R_{C}}
$$

$\underset{\text { Current gain }}{\text { Cottage gain: }} \mathbf{A}_{\mathbf{i}}=-\mathbf{A}_{\mathbf{v}} \frac{\mathbf{Z}_{\mathbf{i}}}{\mathbf{R}_{\mathbf{C}}}$
$\mathbf{A}_{i}=\frac{\mathbf{I}_{\mathbf{o}}}{\mathbf{I}_{\mathbf{i}}}=\frac{\beta \mathbf{R}^{\prime} \mathbf{r}_{\mathbf{o}}}{\left(\mathbf{r}_{\mathbf{o}}+\mathbf{R}_{\mathbf{C}}\right)\left(\mathbf{R}^{\prime}+\boldsymbol{\beta} \mathbf{r}_{\mathbf{e}}\right)}$
$\left.A_{i}=\frac{\mathbf{I}_{\mathbf{o}}}{\mathbf{I}_{\mathbf{i}}} \cong \frac{\beta \mathbf{R}^{\prime}}{\mathbf{R}^{\prime}+\beta \mathbf{r}_{\mathbf{e}}} \right\rvert\, \mathbf{r}_{\mathbf{o}} \geq 10 \mathbf{R}_{\mathbf{C}}$
$A_{i}=\left.\frac{\mathbf{I}_{\mathbf{o}}}{\mathbf{I}_{\mathbf{i}}} \cong \beta\right|_{\mathbf{r}_{\mathbf{o}} \geq 10 R_{C}, R^{\prime} \geq 10 \beta r_{e}}$

Common-Emitter EmitterBias Configuration

Equivalent Model

- Input impedance:

$$
\begin{aligned}
& \mathbf{Z}_{\mathbf{i}}=\mathbf{R}_{\mathbf{B}} \| \mathbf{Z}_{\mathbf{b}} \\
& \mathbf{Z}_{\mathbf{b}}=\beta \mathbf{r}_{\mathbf{e}}+(\beta+\mathbf{1}) \mathbf{R}_{\mathbf{E}} \\
& \mathbf{Z}_{\mathbf{b}} \cong \beta\left(\mathbf{r}_{\mathbf{e}}+\mathbf{R}_{\mathbf{E}}\right) \\
& \mathbf{Z}_{\mathbf{b}} \cong \beta \mathbf{R}_{\mathbf{E}}
\end{aligned}
$$

- Voltage gain:

$$
\begin{aligned}
& \mathbf{A}_{\mathbf{v}}=\frac{\mathbf{V}_{\mathbf{0}}}{\mathbf{V}_{\mathbf{i}}}=-\frac{\beta \mathbf{R}_{\mathbf{C}}}{\mathbf{Z}_{\mathbf{b}}} \\
& \left.\mathbf{A}_{\mathbf{v}}=\frac{\mathbf{V}_{\mathbf{0}}}{\mathbf{V}_{\mathbf{i}}}=-\frac{\mathbf{R}_{\mathbf{C}}}{\mathbf{r}_{\mathbf{e}}+\mathbf{R}_{\mathbf{E}}} \right\rvert\, \mathbf{Z}_{\mathbf{b}}=\beta\left(\mathbf{r}_{\mathbf{e}}+\mathbf{R}_{\mathbf{E}}\right) \\
& \left.\mathbf{A}_{\mathbf{v}}=\frac{\mathbf{V}_{\mathbf{o}}}{\mathbf{V}_{\mathbf{i}}} \cong-\frac{\mathbf{R}_{\mathbf{C}}}{\mathbf{R}_{\mathbf{E}}} \right\rvert\, \mathbf{Z}_{\mathbf{b}} \cong \beta \mathbf{R}_{\mathbf{E}}
\end{aligned}
$$

- Output impedance:

$$
\mathbf{Z}_{\mathbf{0}}=\mathbf{R}_{\mathbf{C}}
$$

- Current gain:

$$
A_{i}=\frac{I_{0}}{I_{i}}=\frac{\beta R_{B}}{\mathbf{R}_{B}+Z_{b}}
$$

