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DAV Partial Derivatives of a Function

deol ~

DEFINITION The partial derivative of f(x, y) with respect to x at the point
(X(), Y 0) 1s

daf
0x

provided the limit exists.

o f(xO + hayO) _ f(x()ay())
(xo,y0) "0

b

DEFINITION The partial derivative of f(x, y) with respect to y at the point

(x0, ¥0) is
af . d f(x0.) . f(x0,y0 + h) — f(x0,y0)
e, - . 05 _ ’
dy (>0, ¥0) dy Y=o h—0 h

provided the limit exists.
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DA‘V Partial Derivatives of a Function

R A, T

B Notations for Partial Derivatives If z = f(x, v), we write

filx,y) =fc= j—i if{ y) = z—
N9 _ 9 _ 0z
filx,y) =f, = oy ay flx,y) oy

B Rules for Finding Partial Derivatives of z=f(x, y)

1. To find f,, regard y as a constant and differentiate f(x, y) with respect to x.

2. To find f,, regard x as a constant and differentiate f(x, y) with respect to y.
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Partial Derivatives of a Function

EXAMPLE 1  Find the values of df/dx and df/dy at the point (4, —5) if
fr,y) =x*>+3xy +y — L

Solution  To find df/dx, we treat y as a constant and differentiate with respect to x:

0
%z%(xz—l—Bxy-l—y—1)=2x+3°1'y+0_0:2x"'3y-

The value of 9f/dx at (4, —5) is 2(4) + 3(—=5) = —7.

To find 9 f/dy, we treat x as a constant and differentiate with respect to y:

o _ 9
dy  dy

The value of 9f/dy at(4, —5) is 3(4) + 1 = 13.

x2+3xy+y—1)=0+3:x14+1—-0=3x+ 1.
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Partial Derivatives of a Function

EXAMPLE 2  Find 9f/dy as a function if f(x, y) = ysinxy.

Solution = We treat x as a constant and f as a product of y and sin xy:

af 9 . 9 . : d
3y~ 9y (ysinxy) = y@smxy T (smxy)@(y)

= (ycos xy)%(xy) + sinxy = xycosxy + sinxy.
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[Z\y Partial Derivatives of a Function of Three or More

Variables

LR LT T

Example

a. To find the partial derivative of f(x, y, z) = xy + yz* + xz with respect to z, consider
x and y to be constant and obtain

d
a—z[)@ + _'}-‘32 + _I’E] = 2yz + x.

b. To find the partial derivative of f(x, y, z) = z sin(xy* + 2z) with respect to z, consider
x and y to be constant. Then, using the Product Rule, you obtain

d i) . d
P sin(xy? + 2z)] = {z}i[sin(x_};z + 2z)] + sin(xy? + 23]5[3]
= (z)[cos(xy? + 22)](2) + sin(xy? + 2z)

= 2z cos(xy? + 2z) + sin(xy? + 2z7).
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PAV Higher derivatives

6)li_all

i 2=H(%Y)  then

O ( of O°f 0°7
f — :f — — —
Fde = =l OX (@Xj ox?  oOx?
o ( of 82f @22
(), =Ty =T, = ( ): )
oy \ox ) oyox oy ox
o (| of 521: @22
(fy)X :fyx :f21: = —
ox \oy ) Oxdy Oxoy
o [ of O°f 0°7
(f,), =f,, =f, N (@y j:ayz =5
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PAV Higher derivatives

dsoln
ool u3 2,3 2
Example f(X,y)=X"+Xy’ -2y

Solution:

f (X, y)=3x"+2xy’ f,(x,y)=3x"y* -4y

0
f (X,Y)= &(C’»x2 + 2xy3) =6x+2y"  f (xy)= %(BXZy2 —4y) = 6xy”

fy (X Y) = %(3X2 + 2xy3) = 6xy’ f,(xy)= %(3x2y2 - 4y) = 6x°y -4
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PA‘V Equality of Mixed Partial Derivatives

LR LT T

THEOREM 13.3 Equality of Mixed Partial Derivatives

If f is a function of x and y such that f_ and f _are continuous on an open disk
R, then, for every (x, y) in R,

folx,y) = £,0x p).
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PA‘V Finding Higher-Order Partial Derivatives
:ﬁ Example
Show that f_ = f. and f__ = f. = f._ for the function
flx,v.z) = ye* + xInz.

Solution:
First partials:

flx,y,z) =ye* +1Inz, flx,y,2) =

&1 | e

Second partials (note that the first two are equal):

M| -

| ;
[y, 2) == foloyz)=— f.nyz)= ~ 2
L

Third partials (note that all three are equal):

1 1 1
fl’;’.:('r’ Y, E] - - EE" fzt:(‘r‘ Y, E) - -2? f:.:,r{x’ Y E] - - 2
iy

Z
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%v Definition of Total Differential

For a differentiable function of one variable Y —f (x) The
differential of y is then defined as

dy = f'(x) dx

For a differentiable function of two variables, 7 =f (x,y)
The differential dz called the total differential, is defined by

dz

0z
dz = L(x, y) dx + J_‘;{x,y}dy=Ed¥+ a—ydy
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Definition of Total Differential

Example:
If z = f(x, y) = x + 3xy — y, find the differential d-.

Solution:

dz 0z
—_ — + — — + -+ -2
dz P dx 7y dy=(2x+ 3y)dx+ (3x— 2y) dy
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Definition of Total Differential

For a differentiable function of three variables, W =f (X,y,Z)
The differential dw called the total differential, is
defined by

aw ow

dw =

¢ dy z
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Total Differential

COROLLARY - If the partial derivatives f, and f, of a function
f(x, y) are continuous throughout an open region R, then f is differentiable at
every point of R.

THEOREM —Differentiability Implies Continuity
If a function f(x, y) is differentiable at (x;, y,), then f 1s continuous at (x;, ¥y)-
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§)lioll Recall that this is the case when f, and f, are continuous.

2| The Chain Rule (Case 1) Suppose that z = f(x, y) is a differentiable function of
x and y, where x = ¢g(¢) and y = h(r) are both differentiable functions of 7. Then z
1s a differentiable function of ¢ and

dzzafdx+ of dy
dt ox dt dy dt

Since we often write 0z/dx in place of d f /0x, we can rewrite
the Chain Rule in the form

dz 0z dx N 0z dy
dt ox dt dy dt
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5ua) Example:
If z=x%y + 3xy*, where x =sin 2t and y = cos t, find dz/dt
when t = 0.

Solution:
dz 0z dx E d_y

The Chain Rule gives — =——+
dit  ox dr  dy dt

= (2xy + 3y*)(2cos 2¢) + (x* + 12xy’)(—sin?)

We simply observe that when t =0, we have x=sin0=0and y=cos 0
=1.
Therefore

— = (0 + 3)(2 cos 0) + (0 + 0)(—sin 0)

https://manara.edu.sy/


https://manara.edu.sy/

[ZV Chain Rule for Functions of Three Variables
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THEOREM Chain Rule for Functions of Three Independent Variables

[fw = f(x, v, z) is differentiable and x, y, and z are differentiable functions of 1,
then w is a differentiable function of 7 and

dw _9fdx , ofdy  Of 4-
—_—= e + - .
dt ox dt dyvdt 0z dt

Example: Find dw/dt if
w=xy+z,x=cost,y=sint, z=t.
What is the derivative’s value at t = 0?
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ain Rule for Functions of Three Variables

Solution Using the Chain Rule for three intermediate variables, we have
dw _owdx  awdy  owdz
dt dx dt dy dt dz dt
= (y)(—sin1) + (x)(cos 1) + (1)(1)
(sin f)(—sin f) + (cos f)(cos 1) + 1

Substitute for intermediate

vanables.

—sin®t + cos?t+1 =1 + cos 2t
S0

dw

i =1+ cos(0) = 2.

=10
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PAV Chain Rule for Functions of n Variables

The Chain Rule can be extended to any number of variables. For

example, if each is a differentiable function of a single variable t
then for

w=flx,%,...,x)
you have
iflv=ﬂWdI[+ﬂ_Wdﬂ+_ . . _|_'E“_]""""ﬂb:"t
dt  ox, dt  dx, dt dx, dt
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PAV The Chain Rule (Case 2)

8ol The Chain Rule (Case 2) Suppose that W =f (X,y) is a differentiable
function of x and y , where x=g(s,t) and y=Nh(s,t) are
differentiable functions of s and t.Then

%_angJr@Way 8W:8wax+6way
0s Ox 0s oy 05 o0 ox ot oy ot
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DAV The Chain Rule (Case 2)

mu—aJl Example Letz=xY, x =3u’+Vv? andy =4u +2v.
Find  @ad o
Solution ou oV

0Z 07 OX 62 oy
ou - oX U &y ou
= yx’ 7 (6u) +4(x’ In X)
= 6u(4u + 2v)(3u® +v3)" 7 +4(3u® +v)™M ™ In(3u” +Vv?),
oz oz ax oz oy
N X av oy oV
= yx’ 1 (2v) + 2(x’ In X)
= 2v(4u +2v)(3u® + V)2 £ 2(3u” +vA) M In(3u® + V).
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Implicit Differentiation

THEOREM Chain Rule: Implicit Differentiation

If the equation F(x, y) = 0 defines y implicitly as a differentiable function of
x, then

dy _ _FE(y)
dx F.(x,y)

3

F (x,y) # 0.

If the equation F(x, y, z) = 0 defines z implicitly as a differentiable function
of x and y, then
E _ F\. [—rm _}J:- E) E _ E(I, }T'J E)

= — and = .
ax  F.xy2) dy  F(xy,2)

F.(x,v,z) # 0.
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PAV Implicit Differentiation
"51”—'5'7’_' Example 1 Findy'if  x°+y° =6xy

Solution Let F(x ,y):x +y _6Xy:0
then

Example 2 Find %and% if  X+y’+2°+6xyz=1
X
Solution Let

F(x,y,2)=Xx"+y +7° +6xyz -1
then (g_ F. x*+2yz
ox  F, Z° +2Xy
oz _ F,  y*+2xz |
oy F, 2° + 2Xy
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Thank you for your attention
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