Tension and Compression in Bars
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Objectives: Mechanics of Materialsinvestigates the stressing and the deformations of structures subjected
to applied loads, starting by the simplest structural members, namely, bars in tension or compression.
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In order to treat such problems, the kinematic relations and a constitutive law are needed to complement

the equilibrium conditions which are known from Engineering Mechanics (Statics). e Lolyall 010 g3
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The kinematic relations represent the geometry of the deformation, whereas the behavior of the material
is described by the constitutive law. The students will learn how to apply these equations and how to solve

determinate as well as statically indeterminate problems. << LS Bypia pi Gyirlg LiigSiue 5y pia Jilowo Al e
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2 Strain g4l

Let us first consider a bar with a constant cross-sectional area which has the

undeformed length [. LioyaBogdn p &bi Jsboy ol plade; cagad JI el i T
Under the action of tensile forces (Fig.) it gets slightly longer. | |
Meld sl Jollatie SS9 LS ad o8 il cumes » | ————f= Al
—=i— |
The elongation is denoted by Al and is assumed F F
to be much smaller than the original length (. L sl ae 25ylae Tus pase lade 4 (ajiasy Al Jglatll 14 50,
As a measure of the amount of deformation, it is useful to introduce, in addition to the Ladly Jolotl o9 8001 s
elongation, the ratio between the elongation and the original (undeformed) length: ¥l Jolally Jgllall o
_ Al
T

The dimensionless quantity € is called szrain. (/a9 G9s) guar¥ jlude cogdddl |jLais | Liag qudll Jglatl o521

Example: If, for example, a bar of the length [ = 1 m undergoes an elongation of Al = 0.5 mm then we
have € = 0.5 X 1073, This is a strain of 0.05%.
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If the bar gets longer (Al > 0) the strain is positive; it is negative in the case of a shortening (Al < 0)
ol il slea) ae 38155 1dag Lz ge 05l 0555 (AL > 0) o T Jaladl sls) 13]
edladl Lo sl sl ae 381sm 1day Ldlu sgadll 0585 (AL > 0) o &f Jshall (ads 13] L

In what follows we will consider only small deformations | I
Log Bytiio colag &l o (o fdiu b Lesd - I -l A =]
ALl < Lorle| < 1. - -

A p
The above definition € = Tl for the strainis  .Jebatl o8 e b agddll o813) Laad goludl cas ) zymy

valid only if £is constant over the bar Iength.

T . d
—ln-|-- -
If the cross-sectional area is not constant or if the undeformed bar
bar is subjected to volume forces acting along its ;
axis, the strain may depend on the location. g 4-‘
Instead of the whole we consider an element of the bar
I I I | deformed bar

(Fig.). It has the length dx in the undeformed state. Its left
end is located at x, the rightend at x + dx. L1 4 e
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Instead of the whole we consider an element of the bar (Fig.). It has the length dx in the

undeformed state. Its left end is located at x, the right end at x + dx.

I
If the bar is elongated, the cross sections undergo displacements I - I undeformed bar

in the x-direction which are denoted by u. They depend on the L | T

[ | deformed bar

location: u = u(x). [

Thus, the displacements are U at the left end of the elementand u + du at the right end.

The length of the elongated elementis dx + (u + du) — u = dx + du.

Hence, the elongation of the elementis given by du. Now the local strain can be defined as the ratio
du

between the elongation and the undeformed length of the element: £(x) = B
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Now the local strain can be defined as the ratio between the elongation and the undeformed

du
length of the element: £(x) = —
g (x) =—
H 1.1
If the displacement u(x) is known, the strain £(x) can be |
I I I | undeformed bar
determined through differentiation. Reversely, if £(x) is known, L jutd
the displacement u(x) is obtained through integration. ' A‘
| | I | deformed bar

Mo

The displacement u(x) and the strain () describe the geometry of the deformation. Therefore they are

. . .. : du . : : :
called kinematic quantities. So the equation £(x) = = S referred to as a kinematic relation.

External Loads

o(x) = Nix) ——— ., &(x) =—, kinematic

Statics
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3 Constitutive Law
Stresses are quantities derived from statics; they are a measure for the stressing in the material .

On the other hand, strains are kinematic quantities; they measure the deformation of a body.

However, the deformation depends on the load which acts on the body. Therefore, the stresses and the

strains are not independent.
External Loads

Statics o(x) = SR > g(x) = _x kinematic

constitutive /amc d
s dlal) & gleal) 53l

The physical relation that connects these quantities is called constirutive law.

It describes the behavior of the material of the body under a load. It depends on the material and can be

obtained only with the aid of experiments.

One of the most important experiments to find the relationship between stress and strain is the tension or

compression test. Here, a small specimen of the material is placed into a testing machine and elongated or

shortened.
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The force F applied by the machine onto the specimen can be read on the dial of the

machine; it causes the normal stress 0 = F /A. The change Al of the length [ of the
specimen can be measured and the strain € = Al/l can be calculated.

The graph of the relationship between stress and strain is shown _F )
schematically (not to scale) for a steel specimen in Fig. I
This graph is referred to as stress-strain diagram. One can see o=
that for small values of the strain the relationship is linear il
(straight line) and the stress is proportional to the strain. o

This behavior is valid until the stress reaches the proportional - 14 -
limit op. If the stress exceeds the proportional limit the strain =1+
begins to increase more rapidly and the slope of the curve “r :
decreases.
This continues until the stress reaches the yie/d stress o, . From this point of the stress-strain
diagram the strain increases at a practically constant stress: the material begins to yie/d. Note
that many materials do not exhibit a pronounced yield point.
At the end of the yielding the slope of the curve increases again which shows that the
material can sustain an additional load. This phenomenon is called strain hardening.
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Experiments show that an elongation of the bar leads to a reduction of the cross-
sectional area A. This phenomenon is referred to as /ateral contraction.

Whereas the cross-sectional area decreases uniformly over the
entire length of the bar in the case of small stresses, it beginsto 7} o=t .
decrease locally at very high stresses. -

This phenomenon is called necking. Since the actual cross section o 7
A_, may then be considerably smaller than the original cross
section A, the stress 0 = F /A does not describe the real stress
any more.

£

It is therefore appropriate to introduce the stress o, = F /Aa which is called ¢rve stress or
physical stress. It represents the true stress in the region where necking takes place. The
stress 0 = F /A is referred to as nominalor conventional or engineering stress. The Fig. shows
both stresses until fracture occurs.

Consider a specimen being first Joaded by a force which causes the stress . Assume that o
is smaller than the yield stress gy , i.e., 0 < oy.
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Subsequently, the load is again removed. Then the specimen will return to its original
length: the strain returns to zero.

In addition, the curves during the loading and the unloading
coincide. This behavior of the material is called e/astic; the
behavior in the region o < o, is referred to as /inearly elastic.

Now assume that the specimen is loaded beyond the yield
stress, i.e., until a stress 0 > gy is reached. Then the curve
during the unloading is a straight line which is parallel to the
straight line in the linear-elastic region, see Fig. If the load is
completely removed the strain does not return to zero: a
plastic strain €, remains after the unloading. This material
behavior is referred to as p/astic.

In the following we will always restrict ourselves to a linearly elastic material behavior.

For the sake of simplicity we will refer to this behavior shortly as elastic, i.e., Then we have
the linear relationship between the stress and the strain.

o=Ee¢
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The proportionality factor E is called modulus of elasticity or Young’s modulus (Thomas
Young, 1773—-1829). The constitutive law 0 = E¢ is called Hooke’s /aw after Robert
Hooke (1635—-1703). Note that Robert Hooke could not present this law in this form
since the notion of stress was introduced only in 1822 by Augustin Louis Cauchy.

The modulus of elasticity has the same value for tension and compression. But, 0 must be less
than the proportional limit o, which may be different for tension or compression.

The modulus of elasticity E is a constant which depends on the material and which can be
determined with the aid of a tension test. It has the dimension of force/area (which is also
the dimension of stress); it is given, for example, in the unit MPa.

Next Table shows the values of E for several materials at room temperature. Note that these
values are just a guidance since the modulus of elasticity depends on the composition of the

material and on the temperature.
A tensile or a compressive force, respectively, causes the strain: € = ¢ /E

Changes of the length and thus strains are not only caused by forces but also by changes of
the temperature. Experiments show that the thermal strain &, is proportional to the change
AT of the temperature if the temperature of the bar is changed uniformly across its section
and along its length:er = a7 AT
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The proportionality factor a; is called coefficient of thermal expansion. It is a material
constant and is given in the unit 1/°C. Next Table shows several values of a; and E.

If the change of the temperature is not the same along the entire length of the bar (if it
depends on the location) then e = a AT represents the local strain e.(x) = a; AT (x).

If a bar is subjected to a stress o as well as to a change AT of the temperature, the total strain
€ is obtained through a superposition € = % + arAT

This relation can also be written in the form ¢ = E (¢ — aAT).
Table of Material Constants

Material E in MPa ap in 1/°C
Steel 2.1-10° 1.2.10~5
Aluminium 0.7-10° 2.3-107%
Concrete 0.3-10° 1.0-1077°
Wood (in fibre direction)  0.7... 2.0-104 2.2 ... 3.1-1073
Cast iron 1.0-10° 0.9-10~%
Copper 1.2-10° 1.6-10—5
Brass 1.0-10° 1.8-.10~%
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