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Power Series

INTRODUCTION

Now that we can test many infinite series of numbers for convergence, we can study
sums that look like “infinite polynomials.” We call these sums power series because
they are
defined as infinite series of powers of some variable, in our case x. Like polynomials,
power series can be added, subtracted, multiplied, differentiated, and integrated to
give new power series. With power series we can extend the methods of calculus to
a vast array of functions, making the techniques of calculus applicable in an even

wider setting
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Start with a square one unit o

by one unit: =
i 111111 A

—+—t—+—+—+—+
2 4 8 16 32 64

This is an example of an 1 16

infinite series. 2

0|
H

This series converges (approaches a limiting value.)

N

Many seriesdonotconverge: 1 1 1 1 1
— ===t —F-r=00 1
1 2 3 4 5
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Geometric Series

In a geometric series, each term is found by multiplying the
preceding term by the same number, r.

a+ar+ar2-|-ar3+...+arn—1+,,,:Zarn—1
n=1

a
This converges to 7 if r| <1 and diverges if|r| > 1.

—1<r<1 isthe interval of convergence.
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Geometric Series
The partial sum of a geometric series is: S —

a(1-r")
" 1-r

a(l-r") _ a

|f r| <1 then |im
e ]y 1-r

If |[x|<land welet r = x then:

T+ X+ X+ X +---

The more terms we use, the better our approximation (over the interval of convergence.)
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A power series is in this form: > ¢ x" =¢; +CX+C,X* +C;X° ++--+¢ X" +++-
n=0

of > c (x—a)" =, +C,(Xx—a) +C, (X —a)? +Cy(Xx =)+ +C,(x—a)" ++-
n=0

The coefficients c,, ¢, ¢,... are constants.

The center “a” is also a constant.

(The first series would be centered at the origin if you graphed it. The
second series would be shifted left or right. “a” is the new center.)
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Once we have a series that we know, we can find a new series by doing the
same thing to the left and right hand sides of the equation.

1 : :
Example1: —— Thisis a geometric series where r=-xX.
1+ X
1 2 3
——=1-X+X" =X+
1+ X
X . : X 2 U3 4
To find a series for —— multlply both sides by X. — =X—"X +X —X ---
1+X 1+ X
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Example 2: Gijven:

1 1
=14+ X+ X+ X 4 find: 5
1-X (1-x)

d 1 d 1 ) 1
~ 2 (1- — (1_x\2._1 =
dx1-x  dx (1=) (1-x) -1 (1- x)2
1 d 5 A , .
So: (]__X)2 =&(1+X+X + X —I—) =1+ 2X+3X° +4X° +--.

We differentiated term by term.
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14+ X
1
—— dx= In(1+ x)+c
1+ X
1
=1ttt -t
1+t
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Example 4: ——=1-t+t -t 4

1+t

X 1 X

—dt:j (I-t+t?—t*+--)dt

01+t 0 . L

1 1 1 X In(1+Xx)=Xx-=x"+= x3—Zx4+.. lex<l
|n(1+t)‘x:t__t2+_t3__t4+...
0 2 3 4

0

I (L+X)=In(1+0) = X=Xt + Xt = x4+
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Power Series
]
Yal—cr=atalx—c) +ax—cP+ - +al—c+---
n=10
THEOREM Convergence of a Power Series

For a power series centered at ¢, precisely one of the following is true.

1. The series converges only at c.

2. There exists a real number R > 0 such that the series converges absolutely
for

x —¢| <R

and diverges for

x —¢| > R.
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Geometric Power Series

In this section and the next, you will study several techniques for finding a power series
that represents a function. Consider the function

1
) = 1—.
Repres enTaTion Of The form of f closely resembles the sum of a geometric series
Functions by Power < 4
Series ,,Zﬂw =17 0<|r| <.

In other words, when a = 1 and r = x, a power series representation for 1/(1 — x),
centered at (), 1s

] v =

]—x= Emﬂ

n=1(

- S

n=1(

=1+x+x2+x3+---, |z <1.
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. . 1 deola
Find a power series for f(x) = .~ centered at 1. 8Li_aJl

R, T

Solution Writing f(x) in the form a/(1 — r) produces

| 1 _a
x 1—=—(—x+1) 1-=r
which implies thata = land r = 1 — x = —(x — 1). So, the power series for f(x) is
l N I
— = 2 ar
A n=0
=Y [-(x— D

0

n

S (=1 — 1y
n=10

=l —-@x—-1)+x—-1P2—-(x—-1PF+-. .-

This power series converges when

lx—1] < 1

https://manara.edu.sy/


https://manara.edu.sy/
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EXAMPLE f(x) = Inx aju_a_l__l

centered at 1.

Solution From Example 2, you know that

1 oo
- 2 (— 1}" X — 1}" Interval of convergence: (0, 2)
":t: =

Integrating this series produces

]nx=J’lcir-|—C
X

{I _ l}u-l-l
n+1 °

=C + f (—1)
n=10

By letting x = 1. you can conclude that C = (. Therefore,

oo . _ l}u-l-l
Inx = aZn{ 1) £ m——
_ = ]_(I—I}EJF(I—IF_(I—IP
1 2 3 4

+ - - .

Interval of
convergence: (0, 2]
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EXAMPLE 3x — 1 dola
fx) = 8)li_all
xz _ 1 M LR .
Solution Using partial fractions, you can write f(x) as
3x — 1 2 1

x2 — 1 =x+]+_r—1‘

By adding the two geometric power series

2 2 _
x + 1 1 — (—x)

> 2(—1)mxm, x| < 1

=1

and

1 — 1

— - = x" x| < 1
x — 1 1 — x ”Zﬂ

yvou obtain the power series shown below.

E = 3 [2(-1) — 1]x"

n=i

1 — 3x + a2 — 3x% 4+ x* — - - -
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Taylor and Maclaurin Series

THEOREM The Form of a Convergent Power Series

If fis represented by a power series f(x) = X a, (x — ¢)" for all x in an open
interval I containing ¢, then

_ ")

n!

n

and

f) = fle) + fle)x = ¢) + f;(f] Y
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Taylor and Maclaurin Series

Definition of Taylor and Maclaurin Series

If a function f has derivatives of all orders at x = ¢, then the series

o f[ull(f-:. f‘.”j{c"}
> pr

n!

(x =) =fle) + fl)x —¢c) +- - - + (x—c)n+- - -

n=Ii

is called the Taylor series for f(x) at ¢. Moreover, if ¢ = 0, then the series is
the Maclaurin series for f.
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Form the Maclaurin series for f(X) =sInX  &ools
&yLiaJl

SOLUTION f (x) =sin x f(0)=sin0=0
f(x)=cosx  f'(0)=cos0=1

f"(X)=-sinx f"(0)=-sin0=0
fO(x)=—cosx f?(0)=-cos0=-1
f (x) =sinx f(0)=sin0=0

f ©)(x) = cos x f®(0)=cos0=1

0 (n)
Zf )y O+(1)x+—x e
~ 2! 3! 4l 5!
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5o
00 (n)
Zf O O+(1)x+2x 2 Do Oy Loy
~ n! 2! 3! 41 5!
3 5 7 n 2n+1
31 51 7 (2n+1)'

https://manara.edu.sy/


https://manara.edu.sy/

7T

Find the Taylor series for Y = COS(X) al x = 2 °J“—°J'

EXAMPLE PAV
deol

T

f (x)=cosx f(gjﬂ)
f'(x)=-sinx f’(%jz—l

f"(X)=—cosXx f"(%jzo

f"(x)=sinx f”’(”

£ (x)=cosx f(“)(z

2
T

)
)

1

0
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Find the Maclaurin series for B

f (x) = cos(2x)

SOLUTION Rather than start from scratch, we can use the function that
we already know:

X2 X4 X6 X8 XlO

cos(X)=1—"—+"——"—+"——
21 41 6! 8! 10!

cos(2x) =1 (2x)2 N (2x)4 B (2x)6 N (2x)8 (2x)10
21 41 6! 8! 10!
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1 S gl
Find the Maclaurin series for  f(x) = T« ot
— X

() 1700 by (o) ropxs 0y, 10

2! 3!
1-x" 1 1 2 , 31, 4l
=l AKX =X =X — X
(1—X)_2 1 1—X 2! 3! 41
-3
2(1-x) : [ ﬁ:1+x+x2+x3+x4+~-- ]
6(1-x)" 6=3!

This is a geometric series with

a=1adl =X
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EXAMPLE Find the Maclaurin series for PA
f(x)=In(1+x) ool

P(x)=f (0)+ f(0)x+ f"z(!o) f’;(!())

In(1+x)=0+1x+_—1x2+Ex3+_—3!x4+...
—(1 2 -1 2 3 4
( +X) [Iﬂ(l-FX)X—X +X _X +]
3 2 3 4
2(1+x) 2
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Find the Maclaurin series for f(X) = e”

P (x)=1(0)+ 1(0)xs e L0

2! 3!
e 1
eX=1+1X+lX2+£X3+£X4+...
o 1 21 3! 41
eX 1 X2 X3 X4
e =l X+ ——F— -
21 31 4]
e 1
e 1
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EXAMPLE
) x> x° x* _
€ :1+X+2|+3|+4|+"' Substitute XI for X.

e¥ =1+ xi+(X2i')2 +(Xi)3 +(Xi)4 +(Xi)5 +(Xi)6 + .-

3! 4] ol 6!

y XA X xAt X xoi°
e” =14+ X+ + + + + + .-

2! 3! 4] ol 6!

y x5 X% Xt X0 x
e =1+ Xl-———+—+——
21 31 41 51 6!

6

1 A Factor out the | terms.
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2 4 6 3 )
- X© X' X .
e =l-—+———+ iy X X
21 4! 6! 3! Ol

2 4 6 3 5
- X X X .
e =1-2 42 Dy i X
21 41 6!

This is the series for cosine. This is the series for sine.
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Solution Replacing x with —x7 in the series for ¢* produces the following.

—x? _ x4 x° x*®
€ —1—12+E—i+ﬁ—*"
|
5 x X x? x? !
_xt‘iI= - — 4+ — -+ —_ . .
LE [“' 3 5-20 7-31 9.4 ]u

1 1 1 1
=l=3*t " nt e

Summing the first four terms, you have

1
j e~ dy = (.74
(1]

which, by the Alternating Series Test, has an error of less than 31z = 0.005.
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POWER SERIES FOR ELEMENTARY FUNCTIONS

Function

%=]—{x—]]+{x—I]E—Lr—l}3'+{x—]]"—- e Gl | Ll | LS
e A )1 T

1l +x

|M={I_”_[x—lll+{x—l}3_{x—1}‘+_ R e i el

2 3 4 n
¥ ¥ oxt X X"
E’=I+I+E+E+E+§+---+E+---
i i3 +.Ij X7 +_1J;| N {_I}HIEH+|
smyx = xX — — — . - -
At 50Tt of (2n + 1)!

Interval of
Convergence

) = x < 2

—1l=x=<1

0scx=2

—oD < X < 00

— o0 < X < D0
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a2 oxt 1 xE (— 1)
uﬂ-sx=l—5+m—a+§—- ' --I—W

U S S U S (=1t

3 5 7 Q) 2n + 1

x? 1 « 3x5 1 -3+ 547 (2n)lxin+]
x + + coe s 4 + - -
' 23 2-+4-5 246+ (27! )220 + 1)

Aresin x

(1+x)f=1+ke+

klk — 1)x?

o ke = Dk — 2) | bk — Dk — 2)(k — 3t

2!

31 4!

—o0 < X < OO

I
I

I

IA

1#
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Thank you for your attention
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