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Vibrations

the tension force in the spring is ks, where kis the spring constant. The

force due to gravity pulling down on the spring is mg , and equilibrium

requires that ks = mg.

Let y, with positive direction downward, denote the displacement

position of the object away from the equilibrium position at any time ¢
after the motion has started. Then the forces acting on the object are

Iy = mg, the propulsion force due to gravity,
Fy=Ik(s +y), therestoring force of the spring’s tension,
dy - , .

F, = 55, a frictional force assumed proportional to velocity.
By Newton’s second law F = ma,

dz

m— =mg — ks — ky — 6—-
dt? & Y df

y=0

Yo

L ]
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f——— bt —

a position

| after release

— start

position

I

y=0

L3

Mass m
at equilibrium
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d’y  dy
mg — ks = 0 ) — - —
g md;2+8dt+ky 0,

Simple Harmonic Motion

Suppose first that there is no retarding frictional force. & = ( there is no damping.

w = \Vkjm w— 4 2 =0  with 0)=y, and '(0) = 0.

E—) ¥y = cj cos wt + ¢ sin wi. ————> y = yp COS wt
Damped Motion

Assume now that there is friction in the spring system, § # 0.

w = Vk/mand2b = §/m v——) " 4+ 2by' + W’y = 0.
r? 4 2br + @ =0, —— ) r=—b+ Vbh? — o
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Case 1: b = w. The double root of the auxiliary equation is real and equals » = w. Th

general solution to Equation (6) is

y = (¢ + cat)e™™.

This situation of motion is called critical damping and is not oscillatory.

Case 2: b > w. The roots of the auxiliary equation are real and unequal, given by

rn=—-b+ Vb*— w’andr, = —b — Vb? — »’. The general solution to Equation (6)
is given by

y = Cle(—b+\f’bz—m2}r n Eze(—b—\r’bz—mz)r_

Here again the motion is not oscillatory and both r; and r, are negative. Thus y approaches

zero as time goes on. This motion is referred to as overdamping

v=(1+1)e’

(a) Critical damping
y
T

0

_2 —
y=2e -

(b) Overdamping
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Case 3: b < w. The roots to the auxiliary equation are complex and given by A
r = —b + iVw? — b’ The general solution to Equation (6) is given by

—bt A/ 2 2 : 2 2
= — + — b"t). /\
y=e (::'1 cosV w bt + csinVw b ) /\u g

0 i
This situation, called underdamping, y =e~'sin(5¢ + m/4)

Electric Circuits (c) Underdamping

q: charge at a cross section of a conductor measured in coulombs (abbreviated c);

I: current or rate of change of charge dg/dt (flow of electrons) at a cross section of a R, Resistor
conductor measured in amperes (abbreviated A); AN
E: electric (potential) source measured in volts (abbreviated V);
V. difference in potential between two points along the conductor measured in volts (V). Voltage @) L. Inductor
source ’
2 |

d“q dq 1 I

dl q _
RI + L o + C- = E(1). ‘ L E + R ? C q = E(). C, Capacitor
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Example o)lioJl
A 16-1b weight is attached to the lower end of a coil spring suspended from the ceiling and having a spring constant of 1 1b/ft.

The resistance in the spring—mass system is numerically equal to the instantaneous velocity. At £ = 0 the weight is set in motion

from a position 2 ft below its equilibrium position by giving it a downward velocity of 2 ft/sec. Write an initial value problem that

models the given situation.

[

S 1D+ 2 +y=0y(0)=2.y(0) =2

L L
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Example

Suppose L = 10 henrys, R = 10 ohms, C = 1/500 farads,E = 100 volts, g(0) = 10 coulombs, and ¢'(0) = i(0) = 0. For-

mulate and solve an initial value problem that models the given LRC circuit. Interpret your results.

L =10,R = 10,C = =, E(t) = 100
= 1054 4+ 109 + 5009 = 100, q(0) = 10, ¢'(0) = 0 = 10r2 + 10r + 500 = 0

r= _li‘/lj 0 (D(50) —1 + ACIQ = (qc =€ }’[(CHIDS Léggt—l—ﬂzﬂiﬂ —'*Céggt)

Gp =A=q,=0=q; =0= 10(0) + 10(0) 4+ S00A = 100 = 500A = 100 = A = <
V199 J_)+1

= q(t) = e 2! (clcns V19 4 ¢ysin

= q =e 7' [(—é—cl + —“éwcz)cns Y2t + (——" LS ‘cz) sin lggt}

2 2 2
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q((]):l(}:>cl+f1-—,=10=>c1=%,

= q() =e~¥( £

49
5

49+/199

cos ‘*’zlggt +

995

S]Hm)

q(0) =0= —3c; + @cz =
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Buckling of a Thin Vertical Column -~
d’y 42y
EI - = —P}r Ot E!‘ - + .P__'I-' — ﬂ:
d” e~

Find the deflection of a thin vertical homogeneous column of
length L subjected to a constant axial load Pif the column is
simply supported or hinged at both ends.

d!
EI“Z + Py =0, y0)=0, yI)=0. yVi+Av=0, w0)=0,

ey~

y.(x)=c,sin(nzx /L) ; 4, =P/El =n’z°/L"
Pa= n?z°El /[ L? critical loads

smallest critical load P1 — 7°El /L% Euler load,

viLy=0 A=P/EI

{a)
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>y

deola
6)ligall
Exercises
A 16-1b weight is attached to the lower end of a coil spring suspended from the ceiling and having a spring constant of 1 1b/ft.
The resistance in the spring—mass system is numerically equal to the instantaneous velocity. At + = 0 the weight is set in motion
from a position 2 ft below its equilibrium position by giving it a downward velocity of 2 ft/sec. At the end of 7 sec, determine
whether the mass is above or below the equilibrium position and by what distance.

y(t) = e " (2cost + 4sint). 0.0864 ft above equilibrium.

https://manara.edu.sy/ e
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Exercises o
A series circuit consisting of an inductor, a resistor, and a capacitor is open. There is an initial charge of 2 coulombs on the capac-
itor, and 3 amperes of current is present in the circuit at the instant the circuit is closed. A voltage given by E(f) = 20 cos f is ap-
plied. In this circuit the voltage drops are numerically equal to the following: across the resistor to 4 times the instantaneous change

in the charge, across the capacitor to 10 times the charge, and across the inductor to 2 times the instantaneous change in the cur-
rent. Find the charge on the capacitor as a function of time. Determine the charge on the capacitor and the current at time r = 10.

q(t) = 2e~'sin2t + sint + 2cos t;

https://manara.edu.sy/ =
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Systems of Linear Differential Equations s emmerr

Linear Systems

dx1
— = anxn + an®x + o+ a,0x + A0
dx,
At = dy(Dx; + ap(Hx, + -+ + a,(Dx, + fo(f)
dx

d.: - ﬂﬂl(r)xl + a!iﬁ(r)x?. + -+ am:r(r)xn + .f.:l(r)'

Whenf(r)=0,i=1,2,..., n, the linear system is said to be homogeneous; otherwise it is nonhomogeneous.

https://manara.edu.sy/ 1



Matrix Form of a Linear System

x,()

_ X,(1)

X, (1)
X1
al x
de| :
xﬂ

, A@) =

ay(t) apn)
ﬂmﬁ (1) axn()

a, (I ) A2 (t )

ap (1)
ﬂzl_(f)

ﬂnl(r)

Y

6)jliaJl

a(1)
(1)
ﬂni( f)

aln(r)
a?rf(r)

aﬂﬂ (I)

X'=AX +F.

X' = AX.

a ln(r)
ﬂz;f(f)

(1)

, F() =
Si(®)
(0
Ju®)
(5)

o
10

Ja(D)

(4)

https://manara.edu.sy/

13



[

6)liaJl

Theorem 10.1.2  Superposition Principle

Let X, X,, ..., X, be a set of solution vectors of the homogeneous system (5) on an interval /.
Then the linear combination

X = C]Xl + CEXZ + .- + Cka?

where the ¢;,1 = 1,2,..., k are arbitrary constants, is also a solution of the system on the interval.

Definition 10.1.2 Linear Dependence/Independence

Let X, X,, ..., X} be a set of solution vectors of the homogeneous system (5) on an interval /.
We say that the set is linearly dependent on the interval if there exist constants ¢y, ¢, ..., ¢,
not all zero, such that

EIXI + CEXE + --- + CkX;{ - 0

for every ¢ in the interval. If the set of vectors is not linearly dependent on the interval, it 1s
said to be linearly independent.

https://manara.edu.sy/
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Theorem 10.1.3°  Criterion for Linearly Independent Solutions

X11 X12 X1n

X21 X22 Xon
]..ret Xl — : 5 X2 — : 5 ey Xﬂ —

xnl -xni xnn

be n solution vectors of the homogeneous system (5) on an interval /. Then the set of solution
vectors is linearly independent on [ if and only if the Wronskian

X1 X2 X1n
Xo1  Xap Ut Xy,

W(Xl's XE-.- 2oy Xn) — : : # 0 (g)
-xnl xni xm:

for every ¢ in the interval.

https://manara.edu.sy/
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Theorem 10.1.5

Let X, X,, ..., X,, be a fundamental set of solutions of the homogeneous system (3) on an
interval I. Then the general solution of the system on the interval is

X = CIXI + ﬂ2X2 IF 99¢ CHXJ'H

where the ¢;, i = 1, 2, ..., n are arbitrary constants.

https://manara.edu.sy/
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Nonhomogeneous Systems oA

Theorem 10.1.6°  General Solution—Nonhomogeneous Systems

Let X, be a given solution of the nonhomogeneous system (4) on an interval 7, and let
Xﬁ_. = CIXI r EQXZ IF ©00 qp CHXH

denote the general solution on the same interval of the associated homogeneous system (5).
Then the general solution of the nonhomogeneous system on the interval is

X=X, +X,

The general solution X of the associated homogeneous system (5) is called the complementary
function of the nonhomogeneous system (4).

https://manara.edu.sy/
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we are prompted to ask whether we can always find a solution of the form

ky

X = k:z eM = Ke

k

for the general homogeneous linear first-order system
X" = AX,

where the coefficient matrix A 1s an n X n matrix of constants.

https://manara.edu.sy/
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Distinct Real Eigenvalues 6)LoJi

LICTUERE N ot

Theorem 10.2.1  General Solution—Homogeneous Systems

LetAj, A,, ..., A, be ndistinct real eigenvalues of the coefficient matrix A of the homogeneous
system (2),and letK,, K,, ..., K, be the corresponding eigenvectors. Then the general solution
of (2) on the interval (—oo, c0) is given by

X = EIKIEA'I + CzKEEAEI + .- + (-,'HKHEA"I.

EXAMPLE 1

dx
Sol — =2x+ 3
olve - y
dy
— = 2x +
dt Y

https://manara.edu.sy/
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SOLUTION We first find the eigenvalues and eigenvectors of the matrix of coefficients.
From the characteristic equation

2 — A 3

2 I —A
we see that the eigenvalues are A; = —1 and A, = 4.
Now for A, = —1

3k, + 3k, =0 1
LR E— K,=(_l)

dmA—AD=‘ ‘=f—&a—4=quxﬁ—®=0

+ 2k, = 0.
2k, + 2k, =0 ‘ X — 1 o and X = 3 L4
For A, = 4, we have ! —1 2 2 ’
2k, + 3k, =0 _(3
—) K. (2)

1 3
‘ X =cX; +cX,= cl(_l)e_f + 62(2) et

https://manara.edu.sy/ AL
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Sol P
olve I X y Z
dy
L + _
dt * + oy ¢
dz
dr y— 3

SOLUTION Using the cofactors of the third row, we find

—4 -1 1 1
det(A — AD) = | 1 S—A -1 |=—=A+3)A+HA-5) =0,
0 1 —3 — A

mm) the eigenvaluesare A; = —3, A, = —4, A; = 5.

https://manara.edu.sy/
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For A; = —3, Gauss—Jordan elimination gives
—1 | 110 (jpc!:'-:;‘i:ﬂn‘i I 0 -1
(A + 3110) = 1 8 —1lo0 = 0 1 )
0 1 00 0 0 0
Similarly, for A, = —4,
0 1 TN o, (10 10
(A+4110)=]1 9 —-1|0 o 0 1 1
0 1 110 0 0 0
Finally, when A; = 5, the augmented matrices
-9 1 1[0 ow (10 -1
(A — 5110) = Lo —1lolTEely | g
0 1 —8/0 0 0 0

0 i ,
0 Kl = 0 . Xl = 0 €—3r
0 i 1

X 10 10

0 ) K, = -1, X,=| -1 ]e*
0 | ;

0 | |

0 —> K.= (8] X,=/[38]|e*
0 1 ,

22
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The general solution -
1 10 |
X=c¢c/|0|e?+c| —1|e*+c3| 8|
1 1 |

Repeated Eigenvalues

In general, if m 1s a positive integer and (A — A;)™ is a factor of the characteristic equation
while (A — A,)"*!is not a factor, then A, is said to be an eigenvalue of multiplicity m. The next
three examples illustrate the following cases:

(i) Forsome n X n matrices A it may be possible to find m linearly independent eigen-
vectors K, K,, ..., K  corresponding to an eigenvalue A, of multiplicity m = n. In
this case, the general solution of the system contains the linear combination

cKieM + o, KoeM + - + ¢, K, e

https://manara.edu.sy/
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(i1) If there is only one eigenvector corresponding to the eigenvalue A, of multiplicity
m, then m linearly independent solutions of the form

Xz == KZIIE'AI! + Kzzeilr

tm—l Im—Z

ol (m — 1)1 E.&l! + sz (m — 2)1 e-r"u! 4o Kmme-r"uf,

X, =K

where K;; are column vectors, can always be found.

1 -2 2
Solve X'=| —2 1 -2 | X
2 =2 1

https://manara.edu.sy/
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det(A — AlI) =

I — A
—2
2

[

-
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SOLUTION Expanding the determinant in the characteristic equation

—2
1 — A
—2

2
—2
I — A

yields —(A + DA —5)=0.Weseethat \;, = A, = —land A; = 5.

For A; = —1, Gauss—Jordan elimination immediately gives
2 - 2 2 0 Dpcrl":;‘ﬁﬂlﬁ 1 - 1
(A+110)=1| —2 2 =210 = 0 0
2 -2 210 0 0
1 0
) K, =|1| and K,=| 1 —
0 |

1

-

X,

1
1 |e
0

—I

and X, =

e

https://manara.edu.sy/
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Lastly, for A; = 5, the reduction

—4
(A — 510) = [ —2
2

-2 2
-4 -2
-2 —4

0
0
0

[

We conclude that the general solution of the system is

X=C1

1
1
0

e '+ ¢

0

0)liaJl
row 1 0
operations
= 0 1
0 0
1

1 le"+ | —1 |e

1

1

5t

-

K;

https://manara.edu.sy/
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I ‘ Second Solution Now suppose that A, is an eigenvalue of multiplicity two and that there
is only one eigenvector associated with this value. A second solution can be found of the form

X, = Kre'' + Pe,

ky P1
k

where K = :2 and P = P:'g
kﬂ p n

To see this we substitute (12) into the system X' = AX and simplify:

(AK — A K)te™ + (AP — AP — K)eM = 0.
Since this last equation is to hold for all values of ¢, we must have

(A—ADK=0
and (A — A\,DP = K.

(12)

(13)
(14)

https://manara.edu.sy/
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X' = (3 —IS)X
2 -9

A+3)7=0 wmmm) )\ =), = —3isaroot of multiplicity two

3 3\
K, = , SO X; = e
1 |

3
Identifying K = (1) and P = (

1

Pi
P2

), mms) (A +3DP =K or

8]

1
m—) P = (é) ) X, = (1) te ¥ + (8) e .

1
) X = cl(?)e_?’f + c{(i’) te ' + (3)3_3’}

6p; —
2p, —

18p,
op,

https://manara.edu.sy/
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1| Eigenvalue of Multiplicity Three When the coefficient matrix A has only one eigen-
vector associated with an eigenvalue A; of multiplicity three, we can find a solution of the form

(12) and a third solution of the form
2

t
X; = KE.«E‘"'ir + PreM + Qe (15)
ki P q:
k
where K = :‘j‘ , P = P:z , and Q = q;‘j‘
kl‘! p-‘l q”
By substituting (15) into the system X' = AX, we find that the column vectors K, P, and Q must satisfy
A—ADK=0 (16)
A-ADP=K (17)
(A—ADQ=P. (18)

https://manara.edu.sy/ 22
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EXAMPLE 5

Solve X' = X.

o b O

1
2
0

o O N

SOLUTION The characteristic equation (A — 2)° = 0 shows that A, = 2 is an eigenvalue of
multiplicity three. By solving (A — 2I)K = 0 we find the single eigenvector

We next solve the systems (A — 2I)P = K and (A — 2I)Q = P in succession and find that

&
&
+

1
mm) X=c¢|0]e¥+¢l|0

0 0

1
0
/1 0\ | /1) 0
2t 2t fz:
e + 11 |e +c3053+1
0

o

L= A3

2t

30

o O =

https://manara.edu.sy/



Complex Eigenvalues e

Theorem 10.2.2  Solutions Corresponding to a Complex Eigenvalue

Let A be the coefficient matrix having real entries of the homogeneous system (2), and let K,
be an eigenvector corresponding to the complex eigenvalue A; = a + i3, @ and (8 real. Then

K,eM and K,eM
are solutions of (2).
K, e = K,e%e® = K,e“(cos Bt + isin Bt)

K,eM = K,e“e P = K,e“(cos Bt — isin fB1).

https://manara.edu.sy/
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By the superposition principle, Theorem 10.1.2, the fuﬂllﬂwing vectors are also solutions:

1

__ - 1 _ ' _
X, E(Kle“‘" + KeM') = E(Kl + K,) e“cos Bt — %(—K1 + K,)e%sin Bt

| o B 1 B
X, = %(—Kle""f + KeM) = é(—l«:1 + Kpecos i + - (K, + Kpe®sin fi.

For any complex number z = a + ib, both > (z+2)=a and%(—z + z) = b are real numbers.

1 — I —
Therefore, the entries in the column vectors > (K, + K) and - (—K, + K,) are real numbers.
By defining

1 _ ' _
B, = (K, +K) and B, = %(—1{l + K)). (22)

https://manara.edu.sy/ =



Theorem 10.2.3  Real Solutions Corresponding to a Complex Eigenvalue

Let A, = a + i3 be a complex eigenvalue of the coefficient matrix A in the homogeneous
system (2), and let B, and B, denote the column vectors defined in (22). Then

X, = [B, cos Bt — B, sin Bt]e

(23)
X, = [B, cos Bt + B, sin Bt]e™
are linearly independent solutions of (2) on (—o0, 00).
The matrices B, and B, in (22) are often denoted by
B, =Re(K,) and B, =Im((K)) (24)

https://manara.edu.sy/
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Solve the initial-value problem

2
e-(2 8
-1 -2

[

6)jliaJl

e wo=(])

SOLUTION First we obtain the eigenvalues from

2 —A

det(A — AD =|"_

The eigenvalues are A; = 2i and A, = 11
(2 — 20k, + 8k, =0
—k; + (=2 —2i)k, =0

8

=AM +4=0.
—2—,1‘

= —2i. For A, the system

— K - (2 j—IZi) _

(-

2
|

)

2
0

)

https://manara.edu.sy/
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2 2
B, = Re(K,) = (_1) and B, = Im(K,) = (0).

I

2
|

Jeosz = (g ] e (gonzr + (L Juna
COS 0 S1I1 Ch 0 COS 1 S11

(2 cos 2t — 2 sin 23) (2 cos 2t + 2 sin 2:)
Cl + Cz .

—cos 2t —sin 2t

https://manara.edu.sy/
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EXERCISES |
Find the general solution of the given system
dx
— =x+ 2y -1 1 0
dt ,
dy X' = 1 2 11X
— =4x + 3 —
i X y 0 3 1
dx dx 3 Z
0 3x —y dr Y
dy dy '
g Ox — 3y g YTy
dz
dx — =Xx—y+z
— = 6x —
Jr X =Y dt
d
v S5x + 2y
dt

https://manara.edu.sy/
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Applications o
Mixtures
Consider the two tanks. Let us suppose for the sake of discussion that tank A
contains 50 gallons of water in which 25 pounds of salt is dissolved. Suppose tank
B contains 50 gallons of pure water. Liquid is pumped in and out of the tanks as
indicated in the figure; the mixture exchanged between the two tanks and the
liquid pumped out of tank Fis assumed to be well stirred. We wish to construct a
mathematical model that describes the number of pounds xi(#) and x(#) of salt in
tanks A and B, respectively, at time £,

input rate of salt output rate of salt
r h N r 8 N

dx, _ ) X3 . !

— = (3 gal/min) - (0 Ib/gal) + (1 gal/min) - | —1b/gal | — (4 gal/min) - [ — 1b/gal

dr 50 50

2 1
= ——Xx + — X, ﬁfJ:l 2 1
(dt 25 50
v .

dxz X X5 Xs 2 2 d_.Lz _— e
—=4-——=-3-—=—-1-—=—x — —x X - L.
dt 50 50 50 25 25 dt 25 25

pure water mixture
3 gal/min 1 gal/min

mixture mixture
4 gal/min 3 gal/min

https://manara.edu.sy/
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Electrical Networks

Kirchhoff’s first law

Kirchhoff’s second law

R LT

. di, |
E(f — IIRI + LIE + l}Rﬂ

di
L, j + (R, + R)i, + Rjiy = E@®)

dis . )
LEE O RIIZ -+ R|I3 — E(I}

https://manara.edu.sy/
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