Lecture 6 : Symmetric matrices and Positive Definiteness

CEDC102: Linear Algebra

Manara University
2023-2024

- Symmetric matrices
- Positive definite matrices
- Singular Value Decomposition
- Similar Matrices and Jordan Form

حَــامعة
الْمَـنـارة

Symmetric Matrices and Orthogonal Diagonalization

- Symmetric matrix: A square matrix A is symmetric if it is equal to its transpose: $A=A^{T}$
- Ex: (Symmetric matrices and nonsymetric matrices)

$$
\begin{array}{rll}
A=\begin{array}{ccc}
{\left[\begin{array}{ccc}
0 & 1 & -2 \\
1 & 3 & 0 \\
-2 & 0 & 5
\end{array}\right]} & B=\left[\begin{array}{ll}
4 & 3 \\
3 & 1
\end{array}\right] & C=\left[\begin{array}{ccc}
3 & 2 & 1 \\
1 & -4 & 0 \\
1 & 0 & 5
\end{array}\right] \\
& \text { (symmetric) } & \text { (symmetric) }
\end{array} & \text { (nonsymmetric) }
\end{array}
$$

- Theorem : (Eigenvalues of symmetric matrices)

If A is an $n \times n$ symmetric matrix, then the following properties are true.
(1) A is diagonalizable.
(2) All eigenvalues of A are real.
(3) A has an orthonormal set of n eigenvectors

- Ex:

Prove that a symmetric matrix is diagonalizable $A=\left[\begin{array}{ll}a & c \\ c & b\end{array}\right]$ Sol: Characteristic equation:

$$
|\lambda I-A|=\left|\begin{array}{cc}
\lambda-a & -c \\
-c & \lambda-b
\end{array}\right|=\lambda^{2}-(a+b) \lambda+a b-c^{2}=0
$$

As a quadratic in λ, this polynomial has a discriminant of

$$
\begin{aligned}
(a+b)^{2}-4\left(a b-c^{2}\right) & =a^{2}+2 a b+b^{2}-4 a b+4 c^{2} \\
& =a^{2}-2 a b+b^{2}+4 c^{2} \\
& =(a-b)^{2}+4 c^{2} \geq 0
\end{aligned}
$$

(1) $(a-b)^{2}+4 c^{2}=0$
$\Rightarrow a=b, c=0$
$A=\left[\begin{array}{cc}a & 0 \\ 0 & a\end{array}\right] A$ is a diagonal matrix
(2) $(a-b)^{2}+4 c^{2}>0$

The characteristic polynomial of A has two distinct real roots, which implies that A has two distinct real eigenvalues. Thus, A is diagonalizable.

- Orthogonal matrix:

A square matrix P is called orthogonal if it is invertible and $P^{-1}=P^{T}$

- Ex 3: (Orthogonal matrices)
(a) $P=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ is orthogonal because $P^{-1}=P^{T}=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$
(b) $P=\left[\begin{array}{ccc}\frac{3}{5} & 0 & -\frac{4}{5} \\ 0 & 1 & 0 \\ \frac{4}{5} & 0 & \frac{3}{5}\end{array}\right]$ is orthogonal because $P^{-1}=P^{T}=\left[\begin{array}{ccc}\frac{3}{5} & 0 & \frac{4}{5} \\ 0 & 1 & 0 \\ -\frac{4}{5} & 0 & \frac{3}{5}\end{array}\right]$
- Theorem : (Properties of orthogonal matrices)

An $n \times n$ matrix P is orthogonal
(1) if and only if its column vectors form an orthonormal set in R^{n}
(2) if and only if its row vectors form an orthonormal set in R^{n}

- Ex : (An orthogonal matrix)

Sol:

$$
P=\left[\begin{array}{ccc}
\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\
-\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} & 0 \\
-\frac{2}{3 \sqrt{5}} & -\frac{4}{3 \sqrt{5}} & \frac{5}{3 \sqrt{5}}
\end{array}\right]
$$

If P is a orthogonal matrix, then $P^{-1}=P^{T} \Rightarrow P P^{T}=I$

$$
\begin{aligned}
& P P^{T}=\left[\begin{array}{ccc}
\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\
-\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} & 0 \\
-\frac{2}{3 \sqrt{5}} & -\frac{4}{3 \sqrt{5}} & \frac{5}{3 \sqrt{5}}
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{3} & -\frac{2}{\sqrt{5}} & -\frac{2}{3 \sqrt{5}} \\
\frac{2}{3} & \frac{1}{\sqrt{5}} & -\frac{4}{3 \sqrt{5}} \\
\frac{2}{3} & 0 & \frac{5}{3 \sqrt{5}}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=I \\
& \text { Let } p_{1}=\left[\begin{array}{c}
\frac{1}{3} \\
-\frac{2}{\sqrt{5}} \\
-\frac{2}{3 \sqrt{5}}
\end{array}\right], p_{2}=\left[\begin{array}{c}
\frac{2}{3} \\
\frac{1}{\sqrt{5}} \\
-\frac{4}{3 \sqrt{5}}
\end{array}\right], p_{3}=\left[\begin{array}{c}
\frac{2}{3} \\
0 \\
\frac{5}{3 \sqrt{5}}
\end{array}\right]
\end{aligned}
$$

$$
p_{1} \cdot p_{2}=p_{1} \cdot p_{3}=p_{2} \cdot p_{3}=0
$$

$$
\left\|p_{1}\right\|=\left\|p_{2}\right\|=\left\|p_{3}\right\|=1
$$

$\left\{p_{1}, p_{2}, p_{3}\right\}$ is an orthonormal set

- Theorem : (Properties of orthogonal matrices)
(a) The transpose of an orthogonal matrix is orthogonal.
(b) The inverse of an orthogonal matrix is orthogonal.
(c) A product of orthogonal matrices is orthogonal.
(d) If A is orthogonal, then $\operatorname{det}(A)=1$ or $\operatorname{det}(A)=-1$.
- Theorem: (Orthogonal Matrices as Linear Operators)

If A is an $n \times n$ matrix, then the following are equivalent
(a) A is orthogonal
(b) $\|A x\|=\|\boldsymbol{x}\|$ for all \boldsymbol{x} in R^{n}
(c) $A \boldsymbol{x}, A \boldsymbol{y}=\boldsymbol{x}, \boldsymbol{y}$ for all \boldsymbol{x} and y in R^{n}

- Theorem : (Properties of symmetric matrices)

Let A be an $n \times n$ symmetric matrix, then Eigenvectors from different eigenspaces are orthogonal.

- Ex: (Eigenvectors of a symmetric matrix) Show that any two eigenvectors of

$$
A=\left[\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right]
$$ corresponding to distinct eigenvalues are orthogonal

Sol: Characteristic equation:

$$
\begin{aligned}
& |\lambda I-A|=\left|\begin{array}{cc}
\lambda-3 & -1 \\
-1 & \lambda-3
\end{array}\right|=(\lambda-2)(\lambda-4)=0 \quad \text { Eigenvalues: } \lambda_{1}=2, \lambda_{2}=4 \\
& \text { (1) } \lambda_{1}=2 \Rightarrow \lambda_{1} I-A=\left[\begin{array}{ll}
-1 & -1 \\
-1 & -1
\end{array}\right] \sim\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] \Rightarrow \boldsymbol{x}_{1}=s\left[\begin{array}{c}
-1 \\
1
\end{array}\right], s \neq 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) } \lambda_{2}=4 \Rightarrow \lambda_{2} I-A=\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right] \sim\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right] \Rightarrow \boldsymbol{x}_{2}=t\left[\begin{array}{l}
1 \\
1
\end{array}\right], t \neq 0 \\
& \boldsymbol{x}_{1} \cdot \boldsymbol{x}_{2}=\left[\begin{array}{c}
-s \\
s
\end{array}\right] \cdot\left[\begin{array}{l}
t \\
t
\end{array}\right]=s t-s t=0 \Rightarrow \boldsymbol{x}_{1} \text { and } \boldsymbol{x}_{2} \text { are orthogonal }
\end{aligned}
$$

- Orthogonal Diagonalization
matrix A is orthogonally diagonalizable when there exists an orthogonal matrix P such that $P^{-1} A P=D$ is diagonal
- Theorem : (Fundamental theorem of symmetric matrices)

Let A be an $n \times n$ matrix. Then A is orthogonally diagonalizable (and has real eigenvalues) if and only if A is symmetric.

- Orthogonal diagonalization of a symmetric matrix:

Let A be an $n \times n$ symmetric matrix.
(1) Find all eigenvalues of A and determine the multiplicity of each.
(2) For each eigenvalue of multiplicity 1 , choose a unit eigenvector.
(3) For each eigenvalue of multiplicity $k \geq 2$, find a set of k linearly independent eigenvectors. If this set is not orthonormal, apply Gram-Schmidt orthonormalization process.
(4) The composite of steps 2 and 3 produces an orthonormal set of n eigenvectors. Use these eigenvectors to form the columns of P. The matrix $P^{-1} A P=P^{T} A P=D$ will be diagonal.

- Ex: (Orthogonal diagonalization)
menumurr
Find a matrix P that orthogonally diagonalizes $A=\left[\begin{array}{ccc}2 & 2 & -2 \\ 2 & -1 & 4 \\ -2 & 4 & -1\end{array}\right]$
Sol: Characteristic equation:
(1) $|\lambda I-A|=(\lambda-3)^{2}(\lambda+6)=0$

Eigenvalues: $\lambda_{1}=-6, \lambda_{2}=3$ (has a multiplicity of 2)
(2) $\lambda_{1}=-6, \boldsymbol{u}_{1}=(1,-2,2) \Rightarrow \boldsymbol{V}_{1}=\frac{\boldsymbol{u}_{1}}{\left\|\boldsymbol{u}_{1}\right\|}=\left(\frac{1}{3},-\frac{2}{3}, \frac{2}{3}\right)$
(3) $\lambda_{2}=3, \boldsymbol{u}_{2}=(2,1,0), \boldsymbol{u}_{3}=(-2,0,1)$

Gram-Schmidt Process:

$$
\begin{aligned}
& \boldsymbol{W}_{\mathbf{2}}=\boldsymbol{u}_{\mathbf{2}}=(2,1,0), \boldsymbol{W}_{\mathbf{3}}=\boldsymbol{u}_{\mathbf{3}}-\frac{\boldsymbol{U}_{\mathbf{3}} \cdot \boldsymbol{W}_{2}}{\boldsymbol{W}_{\mathbf{2}} \cdot \boldsymbol{W}_{\mathbf{2}}} \boldsymbol{W}_{\mathbf{2}}=\left(-\frac{2}{5}, \frac{4}{3}, 1\right) \\
& \boldsymbol{V}_{\mathbf{2}}=\frac{\boldsymbol{W}_{2}}{\left\|\boldsymbol{W}_{\mathbf{2}}\right\|}=\left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}, 0\right), \quad \boldsymbol{V}_{\mathbf{3}}=\frac{\boldsymbol{W}_{\mathbf{3}}}{\left\|\boldsymbol{W}_{3}\right\|}=\left(-\frac{2}{3 \sqrt{5}}, \frac{4}{3 \sqrt{5}}, \frac{5}{3 \sqrt{5}}\right) \\
& \text { (4) } P=\left[\begin{array}{lll}
p_{1} & p_{2} & p_{3}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{3} & \frac{2}{\sqrt{5}} & -\frac{2}{3 \sqrt{5}} \\
-\frac{2}{3} & \frac{1}{\sqrt{5}} & \frac{4}{3 \sqrt{5}} \\
\frac{2}{3} & 0 & \frac{5}{3 \sqrt{5}}
\end{array}\right] \Rightarrow P^{-1} A P=P^{T} A P=\left[\begin{array}{ccc}
-6 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right]
\end{aligned}
$$

- Spectral Decomposition

If A is a symmetric matrix that is orthogonally diagonalized by $P=\left[\begin{array}{llll}\boldsymbol{u}_{1} & \boldsymbol{u}_{2} & \cdots & \boldsymbol{u}_{n}\end{array}\right]$ and if $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the eigenvalues of A corresponding to the unit eigenvectors \boldsymbol{u}_{1}, $\boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{n}$, then we know that $D=P^{T} A P$, where D is a diagonal matrix

$$
\begin{gathered}
A=P D P^{T}=\left[\begin{array}{llll}
\boldsymbol{u}_{1} & \boldsymbol{u}_{2} & \cdots & \boldsymbol{u}_{n}
\end{array}\right]\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{u}_{1}^{T} \\
\boldsymbol{u}_{2}^{T} \\
\vdots \\
\boldsymbol{u}_{n}^{T}
\end{array}\right] \\
A=\left(\begin{array}{llll}
\lambda_{1} \boldsymbol{u}_{1} & \lambda_{2} \boldsymbol{u}_{2} & \cdots & \lambda_{n} \boldsymbol{u}_{n}
\end{array}\right)\left[\begin{array}{c}
\boldsymbol{u}_{1}^{T} \\
\boldsymbol{u}_{2}^{T} \\
\vdots \\
\boldsymbol{u}_{n}^{T}
\end{array}\right]=\begin{array}{c}
\lambda_{1} \boldsymbol{u}_{1} \boldsymbol{u}_{1}^{T}+\lambda_{2} \boldsymbol{u}_{2} \boldsymbol{u}_{2}^{T}+\cdots+\lambda_{n} \boldsymbol{u}_{n} \boldsymbol{u}_{n}^{T} \\
\text { Spectral decomposition of } A
\end{array}
\end{gathered}
$$

- Note:

The Equation $A=\lambda_{1} \boldsymbol{u}_{1} \boldsymbol{U}_{1}^{T}+\lambda_{2} \boldsymbol{u}_{2} \boldsymbol{U}_{2}^{T}+\cdots+\lambda_{n} \boldsymbol{u}_{n} \boldsymbol{u}_{n}^{T}$ is called the spectral decomposition of A, because it involves only the spectrum of A and the corresponding unit eigenvectors of A

- Ex : (A Geometric Interpretation of a Spectral Decomposition)
$A=\left[\begin{array}{rr}1 & 2 \\ 2 & -2\end{array}\right]$ has eigenvalues $\lambda_{1}=-3$ and $\lambda_{2}=2$ with corresponding eigenvectors:

$$
\boldsymbol{x}_{1}=\left[\begin{array}{r}
1 \\
-2
\end{array}\right], \quad \boldsymbol{x}_{2}=\left[\begin{array}{l}
2 \\
1
\end{array}\right] \Rightarrow \boldsymbol{u}_{1}=\frac{\boldsymbol{x}_{\mathbf{1}}}{\left\|\boldsymbol{x}_{1}\right\|}=\left[\begin{array}{r}
\frac{1}{\sqrt{5}} \\
-\frac{2}{\sqrt{5}}
\end{array}\right], \boldsymbol{x}_{2}=\frac{\boldsymbol{x}_{2}}{\left\|\boldsymbol{x}_{2}\right\|}=\left[\begin{array}{c}
\frac{2}{\sqrt{5}} \\
\frac{1}{\sqrt{5}}
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{rr}
1 & 2 \\
2 & -2
\end{array}\right]=\lambda_{1} \boldsymbol{u}_{1} \boldsymbol{u}_{1}^{T}+\lambda_{2} \boldsymbol{u}_{2} \boldsymbol{U}_{2}^{T}=(-3)\left[\begin{array}{rr}
\frac{1}{5} & -\frac{2}{5} \\
-\frac{2}{5} & \frac{4}{5}
\end{array}\right]+(2)\left[\begin{array}{ll}
\frac{4}{5} & \frac{2}{5} \\
\frac{2}{5} & \frac{1}{5}
\end{array}\right]} \\
& \boldsymbol{x}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& A \boldsymbol{X}=\left[\begin{array}{rr}
1 & 2 \\
2 & -2
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
3 \\
0
\end{array}\right] \\
& A \boldsymbol{X}=(-3)\left[\begin{array}{rr}
\frac{1}{5} & -\frac{2}{5} \\
-\frac{2}{5} & \frac{4}{5}
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]+(2)\left[\begin{array}{ll}
\frac{4}{5} & \frac{2}{5} \\
\frac{1}{5} & \frac{1}{5}
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& A \boldsymbol{X}=(-3)\left[\begin{array}{rr}
\frac{1}{5} & -\frac{2}{5} \\
-\frac{2}{5} & \frac{4}{5}
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]+(2)\left[\begin{array}{l}
\frac{4}{5} 5 \\
\frac{2}{5} \\
\frac{2}{5}
\end{array}\right]\left[\begin{array}{l}
1 \\
5
\end{array}\right] \\
& A \boldsymbol{X}=(-3)\left[\begin{array}{r}
-\frac{1}{5} \\
\frac{2}{5}
\end{array}\right]+(2)\left[\begin{array}{l}
\frac{6}{5} \\
\frac{3}{5}
\end{array}\right] \\
& A \boldsymbol{X}=\left[\begin{array}{r}
\frac{3}{5} \\
-\frac{6}{5}
\end{array}\right]+\left[\begin{array}{c}
\frac{12}{5} \\
\frac{6}{5}
\end{array}\right]=\left[\begin{array}{l}
3 \\
0
\end{array}\right]
\end{aligned}
$$

Positive Definite Matrices

1 Symmetric S : all eigenvalues $>0 \Leftrightarrow$ all pivots $>0 \Leftrightarrow$ all upper left determinants >0.
2 The matrix S is then positive definite. The energy test is $\boldsymbol{x}^{\mathrm{T}} S \boldsymbol{x}>0$ for all vectors $\boldsymbol{x} \neq \mathbf{0}$.
3 One more test for positive definiteness : $S=A^{\mathrm{T}} A$ with independent columns in A.
4 Positive semidefinite S allows $\lambda=0$, pivot $=0$, determinant $=0$, energy $\boldsymbol{x}^{\mathrm{T}} S \boldsymbol{x}=0$.
5 The equation $\boldsymbol{x}^{\mathrm{T}} S \boldsymbol{x}=1$ gives an ellipse in \mathbf{R}^{n} when S is symmetric positive definite.

Singular Value Decomposition (SVD)

- Theorem: (Singular Values)

If A is an $m \times n$ matrix, then:
(a) A and $A^{T} A$ have the same null space
(b) A and $A^{T} A$ have the same row space
(c) A^{T} and $A^{T} A$ have the same column space
(d) A and $A^{T} A$ have the same rank

- Theorem :

If A is an $m \times n$ matrix, then:
(a) $A^{T} A$ is orthogonally diagonalizable.
(b) The eigenvalues of $A^{T} A$ are nonnegative

If A is an $m \times n$ matrix, and if $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the eigenvalues of $A^{T} A$, then the numbers

$$
\sigma_{1}=\sqrt{\lambda_{1}}, \sigma_{2}=\sqrt{\lambda_{2}}, \cdots, \sigma_{n}=\sqrt{\lambda_{n}}
$$

are called the singular values of A

- Ex: (Singular Values)

Find the singular values of the matrix $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 1 & 0\end{array}\right]$
Sol:

$$
A^{T} A=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

The characteristic polynomial of $A^{T} A$ is $\quad \lambda^{2}-4 \lambda+3=(\lambda-3)(\lambda-1)$

So the eigenvalues of $A^{T} A$ are: $\lambda_{1}=3, \lambda_{2}=1$, and the singular values of A are:

$$
\sigma_{1}=\sqrt{\lambda_{1}}=\sqrt{3}, \sigma_{2}=\sqrt{\lambda_{2}}=1
$$

main diagonal of an $m \times n$ matrix

We define the main diagonal of an $m \times n$ matrix to be the line of entries starts at the upper left corner and extends diagonally as far as it can go

$$
\left[\begin{array}{ccccccc}
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times
\end{array}\right]\left[\begin{array}{cccc}
\times & \times & \times & \times \\
\times & \times & \times & \times
\end{array}\right]
$$

- Theorem : (Singular Value Decomposition (Brief Form))

If A is an $m \times n$ matrix of rank k, then A can be expressed in the form $A=U \Sigma V^{T}$, where Σ has size $m \times n$ and can be expressed in partitioned form as

$$
\Sigma=\left[\begin{array}{c:c}
D & O_{k \times(n-k)} \\
\hdashline O_{(m-k) \times k} & O_{(m-k) \times(n-k)}
\end{array}\right]
$$

in which D is a diagonal $k \times k$ matrix whose successive entries are the first k singular values of A in nonincreasing order, U is an $m \times m$ orthogonal matrix, and V is an $n \times n$ orthogonal matrix

- Note:

$$
A=U \Sigma V^{T}=\sigma_{1} \boldsymbol{u}_{1} \boldsymbol{V}_{1}^{T}+\sigma_{2} \boldsymbol{u}_{2} \boldsymbol{v}_{2}^{T}+\cdots+\sigma_{k} \boldsymbol{u}_{k} \boldsymbol{v}_{k}^{T}
$$

- Theorem : (Singular Value Decomposition (Expanded Form))

If A is an $m \times n$ matrix of rank k, then A can be factored as

in which U, Σ, and V have sizes $m \times m, m \times n$, and $n \times n$, respectively, and:
(a) $V=\left[\begin{array}{llll}\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \cdots & \boldsymbol{v}_{n}\end{array}\right]$ orthogonally diagonalizes $A^{T} A$
(b) The nonzero diagonal entries of Σ are $\sigma_{1}=\sqrt{\lambda_{1}}, \sigma_{2}=\sqrt{\lambda_{2}}, \cdots, \sigma_{k}=\sqrt{\lambda_{k}}$ where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are the nonzero eigenvalues of $A^{T} A$ corresponding to the column vectors of V
(c) The column vectors of V are ordered so that $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{k}>0$
(d) $\boldsymbol{u}_{i}=\frac{A \boldsymbol{v}_{i}}{\left\|A \boldsymbol{v}_{i}\right\|}=\frac{1}{\sigma_{i}} A \boldsymbol{v}_{i} \quad(i=1,2, \cdots, k)$
(e) $\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{k}\right\}$ is an orthonormal basis for $\operatorname{CS}(A)$
(f) $\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{k}, \boldsymbol{u}_{k+1}, \boldsymbol{u}_{k+2}, \ldots, \boldsymbol{u}_{m}\right\}$ is an extension of $\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{k}\right\}$ to an orthonormal basis for R^{m}

- Ex : (Singular Value Decomposition if A Is Not Square)

Find a singular value decomposition of the matrix
Sol:

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1 \\
1 & 0
\end{array}\right]
$$

The eigenvalues of $A^{T} A$ are: $\lambda_{1}=3, \lambda_{2}=1$, and the singular values of A are: $\sigma_{1}=\sqrt{\lambda_{1}}=\sqrt{3}, \quad \sigma_{2}=\sqrt{\lambda_{2}}=1$

The unit eigenvectors corresponding to λ_{1} and λ_{2} are

$$
\boldsymbol{V}_{1}=\left[\begin{array}{c}
\frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2}
\end{array}\right], \quad \boldsymbol{V}_{2}=\left[\begin{array}{r}
\frac{\sqrt{2}}{2} \\
-\frac{\sqrt{2}}{2}
\end{array}\right] \quad \Rightarrow \quad V=\left[\begin{array}{rr}
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2}
\end{array}\right]
$$

V orthogonally diagonalizes $A^{T} A$
$\boldsymbol{u}_{1}=\frac{1}{\sigma_{1}} A \boldsymbol{V}_{1}=\frac{\sqrt{3}}{3}\left[\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{c}\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2}\end{array}\right]=\left[\begin{array}{c}\frac{\sqrt{6}}{3} \\ \frac{\sqrt{6}}{6} \\ \frac{\sqrt{6}}{6}\end{array}\right]$
\boldsymbol{u}_{1} and \boldsymbol{u}_{2} are two of the three column vectors of U
$\boldsymbol{u}_{2}=\frac{1}{\sigma_{2}} A \boldsymbol{V}_{2}=(1)\left[\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{r}\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2}\end{array}\right]=\left[\begin{array}{r}0 \\ -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2}\end{array}\right]$
To extend the orthonormal set $\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}\right\}$ to an orthonormal basis for R^{3}
the vector \boldsymbol{u}_{3} must be a solution of $\left[\begin{array}{ccc}\frac{\sqrt{6}}{3} & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} \\ 0 & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\end{array}\right]\left[\begin{array}{l}x \\ y \\ Z\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$

$$
\begin{aligned}
& {\left[\begin{array}{l}
x \\
y \\
Z
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right] \Rightarrow \boldsymbol{u}_{3}=\left[\begin{array}{c}
-\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}}
\end{array}\right]} \\
& {\left[\begin{array}{ll}
1 & 1 \\
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ccc}
\frac{\sqrt{6}}{3} & 0 & -\frac{1}{\sqrt{3}} \\
\frac{\sqrt{6}}{6} & -\frac{\sqrt{2}}{2} & \frac{1}{\sqrt{3}} \\
\frac{\sqrt{6}}{6} & \frac{\sqrt{2}}{2} & \frac{1}{\sqrt{3}}
\end{array}\right]\left[\begin{array}{cc}
\sqrt{3} & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2}
\end{array}\right]} \\
& A \\
& =
\end{aligned} U \quad V \quad V^{T} .
$$

- Ex: (Singular Value Decomposition)

Find a singular value decomposition of the matrix $A=\left[\begin{array}{ccc}0 & 1 & 1 \\ \sqrt{2} & 2 & 0 \\ 0 & 1 & 1\end{array}\right]$

$$
A^{T} A=\left[\begin{array}{ccc}
0 & \sqrt{2} & 0 \\
1 & 2 & 1 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
0 & 1 & 1 \\
\sqrt{2} & 2 & 0 \\
0 & 1 & 1
\end{array}\right]=\left[\begin{array}{ccc}
2 & 2 \sqrt{2} & 0 \\
2 \sqrt{2} & 6 & 2 \\
0 & 2 & 2
\end{array}\right]
$$

The eigenvalues of $A^{T} A$ are: $\lambda_{1}=8, \lambda_{2}=2$, and $\lambda_{3}=0$
The singular values of A are: $\sigma_{1}=\sqrt{\lambda_{1}}=2 \sqrt{2}, \quad \sigma_{2}=\sqrt{\lambda_{2}}=\sqrt{2}$
The eigenvectors corresponding to λ_{1}, λ_{2}, and λ_{3} are

$$
\boldsymbol{V}_{1}=\left(\frac{1}{\sqrt{6}}, \frac{3}{2 \sqrt{3}}, \frac{1}{2 \sqrt{3}}\right), \boldsymbol{V}_{2}=\left(-\frac{1}{\sqrt{3}}, 0, \frac{2}{\sqrt{6}}\right), \boldsymbol{V}_{3}=\left(\frac{1}{\sqrt{2}},-\frac{1}{2}, \frac{1}{2}\right)
$$

$$
\begin{aligned}
& V=\left[\begin{array}{ccc}
\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\
\frac{\sqrt{3}}{2} & 0 & -\frac{1}{2} \\
\frac{1}{2 \sqrt{3}} & \sqrt{\frac{2}{3}} & \frac{1}{2}
\end{array}\right] \text { Vorthogonally diagonali } \\
& \boldsymbol{u}_{1}=\frac{1}{\sigma_{1}} A \boldsymbol{V}_{1}=\frac{1}{2 \sqrt{2}}\left[\begin{array}{ccc}
0 & 1 & 1 \\
\sqrt{2} & 2 & 0 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{c}
\frac{1}{\sqrt{6}} \\
\frac{\sqrt{3}}{2} \\
\frac{1}{2 \sqrt{3}}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{\sqrt{6}} \\
\frac{2}{\sqrt{6}} \\
\frac{1}{\sqrt{6}}
\end{array}\right] \\
& \boldsymbol{u}_{2}=\frac{1}{\sigma_{2}} A \boldsymbol{V}_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{ccc}
0 & 1 & 1 \\
\sqrt{2} & 2 & 0 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{c}
-\frac{1}{\sqrt{3}} \\
0 \\
\sqrt{\frac{2}{3}}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}}
\end{array}\right]
\end{aligned}
$$

$\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right\}$ to an orthonormal basis for $R^{3} \Rightarrow \boldsymbol{u}_{3}=\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ 0 \\ -\frac{1}{\sqrt{2}}\end{array}\right]$

$$
\begin{array}{rl}
{\left[\begin{array}{ccc}
0 & 1 & 1 \\
\sqrt{2} & 2 & 0 \\
0 & 1 & 1
\end{array}\right]} & =\left[\begin{array}{ccc}
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\
\frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & 0 \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{ccc}
2 \sqrt{2} & 0 & 0 \\
0 & \sqrt{2} & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{\sqrt{6}} & \frac{\sqrt{3}}{2} & \frac{1}{2 \sqrt{3}} \\
-\frac{1}{\sqrt{3}} & 0 & \sqrt{\frac{2}{3}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{2} & \frac{1}{2}
\end{array}\right] \\
A & U
\end{array} V^{T} \text { U } \quad \begin{gathered}
V
\end{gathered}
$$

Jordan Decomposition

- Jordan Canonical Form (JCF)

Let A an $n \times n$ matrix, with either real (complex) entries. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ denote the distinct eigenvalues of $A(k<n)$

A Jordan chain of length j for A is a sequence of non-zero vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{j} \in K^{n}$ that satisfies: $A \boldsymbol{v}_{1}=\lambda \boldsymbol{v}_{1}, A \boldsymbol{v}_{i}=\lambda \boldsymbol{v}_{i}+\boldsymbol{v}_{i-1}, i=1,2, \ldots, j$ where λ is an eigenvalue of A
A Jordan chain associated with a zero eigenvalue is called a null Jordan chain, and satisfies: $A \boldsymbol{v}_{1}=\mathbf{0}, \quad A \boldsymbol{v}_{i}=\boldsymbol{v}_{i-1}, \quad i=1,2, \ldots, j$

- Note:

The initial vector \boldsymbol{v}_{1} in a Jordan chain is a genuine eigenvector, and so Jordan chains exist only when λ is an eigenvalue

- Note: The rest, $\boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{j}$, are generalized eigenvectors

A nonzero vector \boldsymbol{v} such that $(A-\lambda I)^{k} \boldsymbol{v}=0$ for some $k>0$ and $\lambda \in K$ is called a generalized eigenvector of the matrix A

- Notes:

(1) Every ordinary eigenvector is automatically a generalized eigenvector, since we can just take $k=1$
(2) The minimal value of k for which $(A-\lambda I)^{k} v=0$ is called the index of the generalized eigenvector

- Ex 12:

The only eigenvalue is $\lambda=2$

$$
A=\left[\begin{array}{lll}
2 & 0 & 1 \\
1 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

$\boldsymbol{V}_{1} \in \operatorname{ker}(A-2 I) \Rightarrow\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ Z\end{array}\right]=\left[\begin{array}{l}z \\ X \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right] \quad A-2 I=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
$\boldsymbol{V}_{1}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ is a genuine eigenvector
$A \boldsymbol{v}_{2}=2 \boldsymbol{v}_{2}+\boldsymbol{v}_{1} \Rightarrow(A-2 I) \boldsymbol{V}_{2}=\boldsymbol{v}_{1} \Rightarrow(A-2 I)^{2} \boldsymbol{v}_{2}=(A-2 I) \boldsymbol{V}_{1}=\mathbf{0}$
$(A-2 I) \boldsymbol{V}_{2}=\boldsymbol{V}_{1} \Rightarrow\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}z \\ y \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$

$$
\Rightarrow \boldsymbol{v}_{2} \in \operatorname{ker}(A-2 I)^{2}
$$

$\boldsymbol{V}_{2}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ is a generalized eigenvector of index 2

$$
(A-2 I)^{2}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

$A \boldsymbol{v}_{3}=2 \boldsymbol{v}_{3}+\boldsymbol{v}_{2} \Rightarrow(A-2 I) \boldsymbol{v}_{3}=\boldsymbol{v}_{2} \Rightarrow(A-2 I)^{3} \boldsymbol{v}_{3}=(A-2 I)^{2} \boldsymbol{v}_{2}=0$
$(A-2 I) \boldsymbol{V}_{3}=\boldsymbol{v}_{2} \Rightarrow\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}z \\ y \\ 0\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right] \quad(A-2 I)^{3}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
$\boldsymbol{v}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ is a generalized eigenvector of index 3
$\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}$ is called a Jordan basis for the matrix A

- Theorem : (Jordan basis)

Every $n \times n$ matrix admits a Jordan basis of C^{n}. The first elements of the Jordan chains form a maximal set of linearly independent eigenvectors. Moreover, the number of generalized eigenvectors in the Jordan basis that belong to the Jordan chains associated with the eigenvalue λ is the same as the eigenvalue's multiplicity.

- Ex 13:

Find a Jordan basis for the matrix
Sol:
Characteristic equation:

$$
|\lambda I-A|=(\lambda-1)^{3}(\lambda+2)^{2}=0
$$

$$
A=\left[\begin{array}{ccccc}
-1 & 0 & 1 & 0 & 0 \\
-2 & 2 & -4 & 1 & 1 \\
-1 & 0 & -3 & 0 & 0 \\
-4 & -1 & 3 & 1 & 0 \\
4 & 0 & 2 & -1 & 0
\end{array}\right]
$$

A has two eigenvalues: $\lambda_{1}=1$ (triple eigenvalue), and $\lambda_{2}=-2$ (double)
A has only two eigenvectors: $\boldsymbol{v}_{1}=(0,0,0,-1,1)^{T}$ for $\lambda_{1}=1$ and, $\boldsymbol{v}_{4}=(-1,1,1,-2,0)^{T}$ for $\lambda_{2}=-2$
A has 2 linearly independent eigenvectors, the Jordan basis will contain two Jordan chains of length 3 and 2

$$
\begin{aligned}
& A \boldsymbol{v}_{2}=\boldsymbol{v}_{2}+\boldsymbol{v}_{1} \Rightarrow \boldsymbol{v}_{2}=(0,1,0,0,-1)^{T} \\
& A \boldsymbol{v}_{3}=\boldsymbol{v}_{3}+\boldsymbol{v}_{2} \Rightarrow \boldsymbol{v}_{3}=(0,0,0,1,0)^{T} \\
& A \boldsymbol{v}_{5}=-2 \boldsymbol{v}_{5}+\boldsymbol{v}_{4} \Rightarrow \boldsymbol{v}_{5}=(-1,0,0,-2,1)^{T}
\end{aligned}
$$

$\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}, \boldsymbol{v}_{4}, \boldsymbol{v}_{5}$ is a Jordan basis for the matrix A

An $k \times k$ matrix of the form

$$
J_{\lambda, k}=\left[\begin{array}{ccccc}
\lambda & 1 & 0 & \cdots & 0 \\
0 & \lambda & 1 & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \cdots & 0 & \lambda & 1 \\
0 & \cdots & 0 & 0 & \lambda
\end{array}\right]
$$

in which λ is a real or complex number, is known as a Jordan block
A Jordan matrix is a square matrix of block diagonal form

$$
J=\operatorname{diag}\left(J_{\lambda_{1}, n_{1}}, J_{\lambda_{2}, n_{2}}, \cdots, J_{\lambda_{k}, n_{k}}\right)=\left[\begin{array}{cccc}
J_{\lambda_{1}, n_{1}} & 0 & \cdots & 0 \\
0 & J_{\lambda_{2}, n_{2}} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & J_{\lambda_{k}, n_{k}}
\end{array}\right]
$$

- Ex:
$\left[\begin{array}{llllll}\hline 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$

6 distinct 1x1
Jordan blocks
$\left.\left\lvert\, \begin{array}{|rrrr|rr}\hline-1 & 1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & 0 & -1\end{array}\right.\right]$
4×4 Jordan block followed by a 2×2 Jordan block

0	1	0	0	0	0
0	0	0	0	0	0
0	0	1	1	0	0
0	0	0	1	0	0
0	0	0	0	2	1
0	0	0	0	0	2

Three 2×2 Jordan blocks with respective diagonal entries $0,1,2$

> حَـامعة
> الـَمَـنارة

4 Jordan blocks, 3 different eigenvalues
The algebraic multiplicity for $\lambda=2$ is 3 , geometric multiplicity is 1
The algebraic multiplicity for $\lambda=-1$ is 1 , geometric multiplicity is 1
The algebraic multiplicity for $\lambda=4$ is 3 , geometric multiplicity is 2

- Theorem : (Jordan canonical form)

Let A be an $n \times n$ real or complex matrix. Let $S=\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right)$ be a matrix whose columns form a Jordan basis of A. Then S places A into the Jordan canonical form:

$$
S^{-1} A S=\operatorname{diag}\left(J_{\lambda_{1}, n_{1}}, J_{\lambda_{2}, n_{2}}, \cdots, J_{\lambda_{k}, 0_{k}} \text { or), equivalently, } A=S J S^{-1}\right.
$$

- Notes:
(1) The diagonal entries of the similar Jordan matrix J are the eigenvalues of A
(2) A is diagonalizable if and only if every Jordan block is of size 1×1
- Ex:

Sol

$$
A=\left[\begin{array}{ccccc}
-1 & 0 & 1 & 0 & 0 \\
-2 & 2 & -4 & 1 & 1 \\
-1 & 0 & -3 & 0 & 0 \\
-4 & -1 & 3 & 1 & 0 \\
4 & 0 & 2 & -1 & 0
\end{array}\right]
$$

$$
\left.S=\left[\begin{array}{ccccc}
0 & 0 & 0 & -1 & -1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
-1 & 0 & 1 & -2 & -2 \\
1 & -1 & 0 & 0 & 1
\end{array}\right], \quad J=S^{-1} A S=\begin{array}{|ccc|cc}
\hline 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
\hline 0 & 0 & 0 & -2 & 1 \\
0 & 0 & 0 & 0 & -2
\end{array}\right]
$$

