تطبيقات 1

Lecture No. 9

The motion planning of nonholonomic ROBOT

> Dr. Eng. Essa Alghannam Ph.D. Degree in Mechatronics Engineering

Contents

1. Introduction

- Characteristics of nonholonomic ROBOT
- Motion planning of nonholonomic ROBOT

1. Steering Nonholonomic Systems using chained form system and Cosine Switch Control
2. WMR kinematics model
3. Experiments

1. Introduction

- Nonholonomic robot

There are constrains on the velocity or acceleration of the robot which cannot be integrated.

- Nonholonomic motion planning

Design an appropriate bounded input to steer the nonholonomic system from an initial configuration to a desired final configuration over finite time.

1. Introduction

Difficulties

Motion coupling: cannot be expressed by a set of independent generalized coordinates
Nonlinear system: cannot use feedback linearization method

* Chained form system

Controllable nonholonomic syste form system
Simple structure
Easy to integrate $\left\{\begin{array}{l}\dot{z}_{1}=v_{1} \\ \dot{z}_{2}=v_{2} \\ \dot{z}_{3}=z_{2} \cdot v_{1} \\ \vdots \\ \dot{z}_{n}=z_{n-1} \cdot v_{1}\end{array}\right.$

1. Introduction

جَـامعة

Fig. Motion planning schematic diagram

Cosine Switch Control algorithm

Motion planning of
chained form system

Sinusoidal control algorithm\end{array}\right.\)

1. Introduction

Fig. Motion planning schematic diagram

Whether the system can be converted into a chained form system

How to realize the motion planning of chained form system
Whether the inverse conversion is feasible

n-Dimensional Chained Form System

By considering the n -dimensional chained form system

$$
z=\left[\begin{array}{lllll}
z_{1} & z_{2} & z_{3} & \ldots & z_{n}
\end{array}\right]
$$

with two inputs $\quad\left[\begin{array}{ll}v_{1} & v_{2}\end{array}\right]$

$$
z_{1}^{\bullet}=v_{1}, z_{2}^{\bullet}=v_{2}, z_{3}^{\bullet}=z_{2} \cdot v_{1}, \cdots, z_{n}^{\bullet}=z_{n-1} \cdot v_{1}
$$

A chained form system is a system of the form:

$$
z^{\bullet}=\left[\begin{array}{c}
1 \\
0 \\
Z_{2} \\
Z_{3} \\
\vdots \\
Z_{n-1}
\end{array}\right] v_{1}+\left[\begin{array}{c}
0 \\
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right] v_{2} \quad z=\left[\begin{array}{lllll}
z_{1} & z_{2} & z_{3} & \ldots & z_{n}
\end{array}\right]^{T}
$$

Cosine switch control

For n-dimensional chained form system, cosine switch control can steer it from a given initial configuration $z(0)$ to a desired configuration $z(T)$ through $2(n-2)+1$ times of intervals mostly.

$$
\varepsilon=T /[2(\mathrm{n}-2)+1]
$$

2(n-2) times of input switch

Cosine switch control

In odd time intervals, i.e., when:
the control inputs are represented by:
جَــامعة
الـَـــنارة

$$
\begin{aligned}
& t \in[2 i . \varepsilon,(2 i+1) . \varepsilon],(i=0,1,2 \cdots n-2) \\
& \quad v_{1}=0 \\
& \quad v_{2}=c_{2 i+1}(1-\cos w t)
\end{aligned}
$$

Where, $\quad c_{2 i+1} \quad$ are undetermined coefficients, w is the angular frequency and $\quad \mathrm{W}=2 \pi / \varepsilon$ we can solve the undetermined coefficients by substituting boundary conditions.

$$
\begin{aligned}
z_{1}\left(t_{2 i+1}\right) & =z_{1}\left(t_{2 i}\right) \\
z_{2}\left(t_{2 i+1}\right) & =c_{2 i+1} \cdot \varepsilon+z_{2}\left(t_{2 i}\right) \\
z_{3}\left(t_{2 i+1}\right) & =z_{3}\left(t_{2 i}\right) \\
& \vdots \\
z_{n}\left(t_{2 i+1}\right) & =z_{n}\left(t_{2 i}\right)
\end{aligned}
$$

Cosine switch control

In even time intervals, i.e., when

$$
t \in[(2 j+1) \cdot \varepsilon,(2 j+2) \cdot \varepsilon],(j=0,1,2 \cdots n-3)
$$

the control inputs are represented by:

$$
\begin{aligned}
& v_{1}=c_{2 j+2}(1-\cos w t) \\
& v_{2}=0
\end{aligned}
$$

$$
\begin{aligned}
z_{1}\left(t_{2 j+2}\right) & =c_{2 j+2} \cdot \varepsilon+z_{1}\left(t_{2 j+1}\right) \\
z_{2}\left(t_{2 j+2}\right) & =z_{2}\left(t_{2 j+1}\right) \\
z_{3}\left(t_{2 j+2}\right) & =c_{2 j+2} \cdot z_{2}\left(t_{2 j+1}\right) \cdot \varepsilon+z_{3}\left(t_{2 j+1}\right) \\
& \vdots \\
z_{n}\left(t_{2 j+2}\right) & =\sum_{k=1}^{n-2} \frac{\left(c_{2 j+2} \cdot \varepsilon\right)^{k} \cdot z_{n-k}\left(t_{2 j+1}\right)}{k!}+z_{n}\left(t_{2 j+1}\right)
\end{aligned}
$$

Cosine switch control

The final configuration at T can be calculated by iterative operation via:

$$
\begin{aligned}
& z_{1}(T)=\sum_{j=0}^{n-3} c_{2 j+2} \cdot \varepsilon+z_{1}(0) \\
& z_{2}(T)=\sum_{i=0}^{n-2} c_{2 i+1} \cdot \varepsilon+z_{2}(0) \\
& z_{3}(T)=\sum_{i=0}^{n-3}\left(\sum_{j=i}^{n-3} c_{2 j+2} \cdot \varepsilon\right) \cdot c_{2 i+1} \cdot \varepsilon+\sum_{j=0}^{n-3} c_{2 j+2} \cdot \varepsilon \cdot z_{2}(0)+z_{3}(0)
\end{aligned}
$$

$$
z_{n}(T)=\sum_{i=0}^{n-3} \frac{\left(\sum_{j=i}^{n-3} c_{2 i+2} \cdot \varepsilon\right)^{n-2}}{(n-2)!} \cdot c_{2 i+1} \cdot \varepsilon+\sum_{k=1}^{n-2} \frac{\left(\sum_{j=0}^{n-3} c_{2 j+2} \cdot \varepsilon\right)^{k}}{k!} \cdot z_{n-k}(0)+z_{n}(0)
$$

Specify a set of coefficients $\boldsymbol{C}_{2 j+2}$, and they must be satisfied with:

$$
\sum_{j=0}^{n-3} c_{2 j+2}=\frac{z_{1}(T)-z_{1}(0)}{\varepsilon} \quad \square C_{2 i+1}
$$

MOBILE ROBOT
KINEMATICS

$$
\begin{gathered}
V=\frac{V_{L}+V_{R}}{2} \\
V_{L}=r \cdot \dot{\theta}_{L} \\
V_{R}=r \cdot \dot{\theta}_{R} \\
V=\frac{r \dot{\theta}_{L}+r \dot{\theta}_{R}}{2}=\frac{r}{2}\left(\dot{\theta}_{L}+\dot{\theta}_{R}\right)
\end{gathered}
$$

الـمَــنارة

$$
\dot{\varphi}=\frac{V_{R}-V_{L}}{b}
$$

$$
\dot{\varphi}=\frac{r}{b}\left(\dot{\theta}_{R}-\dot{\theta}_{L}\right)
$$

MOBILE ROBOT
 KINEMATICS

جَــامعة
الـمــنارة

$$
\left[\begin{array}{c}
\dot{X} \\
\dot{Y} \\
\dot{\varphi}
\end{array}\right]=\left[\begin{array}{cc}
\frac{r \cos \varphi}{2} & \frac{r \cos \varphi}{2} \\
\frac{r \sin \varphi}{2} & \frac{r \sin \varphi}{2} \\
\frac{r}{b} & -\frac{r}{b}
\end{array}\right]\left[\begin{array}{l}
\dot{\theta}_{R} \\
\dot{\theta}_{L}
\end{array}\right]=\left[\begin{array}{c}
\frac{r \cos \varphi}{2}\left(\dot{\theta}_{R}+\dot{\theta}_{L}\right) \\
\frac{r \sin \varphi}{2}\left(\dot{\theta}_{R}+\dot{\theta}_{L}\right) \\
\frac{r}{b}\left(\dot{\theta}_{R}-\dot{\theta}_{L}\right)
\end{array}\right]=\left[\begin{array}{c}
V \cos \varphi \\
V \sin \varphi \\
\frac{V_{R}-V_{L}}{b}
\end{array}\right]
$$

$$
\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\left[\begin{array}{l}
V \\
\varphi^{\cdot}
\end{array}\right]=\left[\begin{array}{cc}
\frac{r}{2} & \frac{r}{2} \\
\frac{r}{b} & -\frac{r}{b}
\end{array}\right]\left[\begin{array}{l}
\theta_{R}^{\cdot} \\
\theta_{L}^{\cdot}
\end{array}\right]=\left[\begin{array}{l}
\frac{r}{2}\left(\theta_{R}^{\cdot}+\theta_{L}^{\cdot}\right) \\
\frac{r}{b}\left(\theta_{R}^{\cdot}-\theta_{L}^{\cdot}\right)
\end{array}\right]
$$

u_{l} refers to the forward velocity of car V, u_{2} stands for the steering velocity of car.

Equation shows that the output velocities are nonzero even if only one wheel is rotating, for this reason this type of platform has the ability to change its orientation on the spot.

Ex. Differential wheeled robot

Kinematic model

$$
\begin{aligned}
& n=3 \\
& X^{\bullet}=\cos \varphi \cdot u_{1} \\
& Y^{\bullet}=\sin \varphi \cdot u_{1} \\
& \varphi^{\bullet}=u_{2}
\end{aligned}
$$

$$
\left[\begin{array}{c}
X^{\bullet} \\
Y^{\bullet} \\
\varphi^{\bullet}
\end{array}\right]=\left[\begin{array}{cc}
\frac{r}{2} \cos \varphi & \frac{r}{2} \cos \varphi \\
\frac{r}{2} \sin \varphi & \frac{r}{2} \sin \varphi \\
\frac{r}{b} & -\frac{r}{b}
\end{array}\right]\left[\begin{array}{c}
\theta_{R}^{\cdot} \\
\theta_{L}^{\cdot}
\end{array}\right]
$$

$$
u_{1}=V=\sqrt{X^{\bullet 2}+Y^{\bullet 2}}
$$

$$
\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\left[\begin{array}{cc}
\frac{r}{2} & \frac{r}{2} \\
\frac{r}{b} & -\frac{r}{b}
\end{array}\right]\left[\begin{array}{l}
\theta_{R}^{\cdot} \\
\theta_{L}^{\cdot}
\end{array}\right]
$$

$$
u_{2}=\varphi^{\bullet}
$$

u_{1} refers to the forward velocity of $\mathrm{car} \mathrm{V}, u_{2}$ stands for the steering velocity of car.

$$
\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{\varphi}
\end{array}\right]=\left[\begin{array}{cc}
\cos \varphi & 0 \\
\sin \varphi & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]
$$

Ex. Differential wheeled robot

 chained form system model$$
\left\{\begin{array} { l }
{ z _ { 1 } = X } \\
{ z _ { 2 } = \operatorname { t a n } \varphi \Rightarrow } \\
{ z _ { 3 } = Y }
\end{array} \Rightarrow \left\{\begin{array}{l}
z_{1}^{\bullet}=X^{\bullet} \\
z_{2}^{\cdot}=\frac{1}{\cos ^{2} \varphi} \varphi^{\bullet} \\
z_{3}^{\cdot}=Y^{\bullet}
\end{array}\right.\right.
$$

$$
\begin{aligned}
& \frac{v_{1}=\cos \varphi \cdot u_{1}}{} \begin{array}{l}
v_{2}=\frac{1}{\cos ^{2} \varphi} \cdot u_{2}
\end{array} \\
& \hline \text { أَمَـَامعنارةة }
\end{aligned}
$$

$$
X^{\bullet}=\cos \varphi \cdot u_{1}
$$

$$
Y^{\bullet}=\sin \varphi \cdot u_{1}
$$

$$
\varphi^{\bullet}=u_{2}
$$

$$
\left\{\begin{array}{l}
z_{3}^{\cdot}=z_{2} \cdot v_{1} \\
z_{2}=\int z_{2}^{\cdot} \cdot d \varphi=\int v_{2} \cdot d \varphi=\int\left(\frac{1}{\cos ^{2} \varphi} \cdot \varphi^{\cdot}\right) \cdot d \varphi=\tan \varphi
\end{array}\right.
$$

so :

$$
\sqrt{\left[\begin{array}{l}
z_{1}^{\bullet}=v_{1}, \\
z_{2}^{\bullet}=v_{2}, z_{3}^{\bullet}=z_{2} \cdot v_{1} \\
z_{1}^{\bullet}=X^{\bullet}
\end{array}, z_{2}^{\bullet}=\frac{1}{\cos ^{2} \varphi} \varphi^{\bullet}\right.}
$$

$$
z_{3}^{\bullet}=z_{2} \cdot v_{1}=(\tan \varphi) X^{\cdot}=\frac{\sin \varphi}{\cos \varphi} \cdot X^{\cdot}=\sin \varphi \cdot u_{1}=Y^{\cdot}
$$

$$
\left\{\begin{array} { l }
{ z _ { 1 } = X } \\
{ z _ { 2 } = \operatorname { t a n } \varphi } \\
{ z _ { 3 } = Y }
\end{array} \Rightarrow \left\{\begin{array}{l}
v_{1}=\cos \varphi \cdot u_{1} \\
v_{2}=\frac{1}{\cos ^{2} \varphi} \cdot u_{2}
\end{array}\right.\right.
$$

Ex. Differential wheeled robot

initial and final configurations

$$
\text { intial configuration }\left[\begin{array}{c}
X(0)=0 \\
Y(0)=1 \\
\varphi(0)=0
\end{array}\right] \text {, final configuration }\left[\begin{array}{c}
X(T)=5 \\
Y(T)=0 \\
\varphi(T)=\pi / 4
\end{array}\right]
$$

$$
\left\{\begin{array}{l}
z_{1}=X \\
z_{2}=\tan \varphi \\
z_{3}=Y
\end{array}\right.
$$

$$
\begin{gathered}
\text { intial configuration }\left[\begin{array}{l}
z_{l}(0)=0 \\
z_{2}(0)=0 \\
z_{3}(0)=1
\end{array}\right] \text {, final configuration }\left[\begin{array}{l}
z_{l}(T)=z_{l}(30)=5 \\
z_{2}(T)=z_{2}(30)=\tan \frac{\pi}{4}=1 \\
z_{3}(T)=z_{3}(30)=0
\end{array}\right] \\
n=3, \varepsilon=\frac{T}{2(n-2)+1}=10 \mathrm{sec}
\end{gathered}
$$

Ex. Differential wheeled robot

 boundary conditionsجَــامعة الـَمَـنارة
interval 1: $\quad t_{0}=0 \rightarrow t_{1}=10$
interval 2: $t_{1}=10 \rightarrow t_{2}=20$
interval 3: $t_{2}=20 \rightarrow t_{3}=30$

$$
\left\{\begin{array} { l }
{ z _ { 1 } (t _ { 1 }) = z _ { 1 } (t _ { 0 }) } \\
{ z _ { 2 } (t _ { 1 }) = c _ { 1 } \cdot \varepsilon + z _ { 2 } (t _ { 0 }) } \\
{ z _ { 3 } (t _ { 1 }) = z _ { 3 } (t _ { 0 }) }
\end{array} \Rightarrow \left\{\begin{array}{l}
z_{1}(10)=z_{1}(0)=0 \\
z_{2}(10)=c_{1} \cdot \varepsilon+z_{2}(0)=10 c_{1} \\
z_{3}(10)=z_{3}(0)=1
\end{array}\right.\right.
$$

$$
\left\{\begin{array} { l }
{ z _ { 1 } (t _ { 2 }) = c _ { 2 } \cdot \varepsilon + z _ { 1 } (t _ { 1 }) } \\
{ z _ { 2 } (t _ { 2 }) = z _ { 2 } (t _ { 1 }) } \\
{ z _ { 3 } (t _ { 2 }) = c _ { 2 } \cdot z _ { 2 } (t _ { 1 }) \cdot \varepsilon + z _ { 3 } (t _ { 1 }) }
\end{array} \Rightarrow \left\{\begin{array}{l}
z_{1}(20)=c_{2} \cdot \varepsilon+z_{1}(10)=10 c_{2} \\
z_{2}(20)=z_{2}(10)=10 c_{1} \\
z_{3}(20)=c_{2} \cdot z_{2}(10) \cdot \varepsilon+z_{3}(10)=100 c_{1} c_{2}+1
\end{array}\right.\right.
$$

$$
\left\{\begin{array} { l }
{ z _ { 1 } (t _ { 3 }) = z _ { 1 } (t _ { 2 }) } \\
{ z _ { 2 } (t _ { 3 }) = c _ { 3 } \cdot \varepsilon + z _ { 2 } (t _ { 2 }) } \\
{ z _ { 3 } (t _ { 3 }) = z _ { 3 } (t _ { 2 }) }
\end{array} \Rightarrow \left\{\begin{array} { l }
{ z _ { 1 } (3 0) = 5 = z _ { 1 } (2 0) = 1 0 c _ { 2 } } \\
{ z _ { 2 } (3 0) = 1 = c _ { 3 } \cdot \varepsilon + z _ { 2 } (2 0) = 1 0 c _ { 3 } + 1 0 c _ { 1 } } \\
{ z _ { 3 } (3 0) = 0 = z _ { 3 } (2 0) = 1 0 0 c _ { 1 } c _ { 2 } + 1 }
\end{array} \Rightarrow \left\{\begin{array}{l}
c_{2}=0.5 \\
c_{1}=-0.02 \\
c_{3}=6 / 50
\end{array}\right.\right.\right.
$$

Ex. Differential wheeled robot motion control

جَــامعة
الـَمَـنارة
the first interval $[0,10]$:

$$
\begin{array}{r}
v_{2}=c_{1}(1-\cos w t) \\
\mathrm{z}_{2}^{\cdot}=v_{2} \\
v_{2}=\frac{u_{2}}{\cos ^{2} \varphi}
\end{array} \Rightarrow\left\{\begin{array}{ll}
\frac{u_{2}}{\cos ^{2} \varphi}=c_{1}(1-\cos w t) & \text { Bis constant, we get it fror } \\
\mathrm{z}_{2}^{\cdot}=c_{1}(1-\cos w t) & \text { and final coditions of this } \\
\Rightarrow z_{2}(0)=0 \& z_{2}(10)=-0.2
\end{array}\right\} \begin{aligned}
& B=0 \\
& \begin{array}{c}
\text { https://manara.edu.sy/ }
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
z_{2}=\tan \varphi \Rightarrow \varphi=\arctan \left(c_{1} t-\frac{c_{1}}{w} \sin w t\right), t \in[0,10], w=\frac{2 \pi}{\varepsilon} \\
t=0 \Rightarrow \varphi=0 \\
t=10 \Rightarrow \varphi=\arctan \left(10 c_{1}\right)=\arctan (-0.2) \approx-11.3^{\circ} \\
u_{2}=\varphi^{\cdot} \Rightarrow u_{2}=\frac{d}{d t}\left(\arctan \left(c_{1} t-\frac{c_{1}}{w} \sin w t\right)\right) \\
v_{2}=\frac{1}{\cos ^{2} \varphi} u_{2} \Rightarrow v_{2}=\frac{1}{\cos ^{2}\left(\arctan \left(c_{1} t-\frac{c_{1}}{w} \sin w t\right)\right)} \frac{d}{d t}\left(\arctan \left(c_{1} t-\frac{c_{1}}{w} \sin w t\right)\right) \\
\left\{\begin{array}{l}
z_{3}^{*}=z_{2} \cdot v_{1} \\
v_{1}=0
\end{array}\right\} \Rightarrow z_{3}=C \\
C \text { is constant, we get it from the intial and final coditions of this interval }: \\
{\left[\begin{array}{l}
z_{3}(0)=1 \\
z_{3}(10)=1
\end{array}\right] \Rightarrow C=1 \Rightarrow z_{3}(t)=1 \Rightarrow Y(t)=1} \\
\hline
\end{gathered}
$$

Ex. Differential wheeled robot motion control

the second interval [10,20]:

$$
\begin{aligned}
& w=\frac{2 \pi}{\varepsilon}, \varepsilon=10, c_{2}=0.5, c_{1}=-0.02, c_{3}=6 / 50 \\
&\left\{\begin{array}{l}
X(t)=c_{2} t-\frac{c_{2}}{w} \sin w t-10 c_{2} \\
Y(t)=-0.2 c_{2} t-\frac{0.2 c_{2}}{w} \sin w t+2 \\
\varphi(t)=\arctan \left(10 c_{1}\right)=\arctan (-0.2) \approx-11.3^{\circ} \\
v_{1}=0.5-0.5 \cos w t, v_{2}=0
\end{array}\right.
\end{aligned}
$$

Ex. Differential wheeled robot motion control

$$
\begin{gathered}
\text { the third interval [20,30]: } \\
w=\frac{2 \pi}{\varepsilon}, \varepsilon=10, c_{2}=0.5, c_{1}=-0.02, c_{3}=6 / 50 \\
\left\{\begin{array}{l}
X(t)=5 \\
Y(t)=0
\end{array}\right. \\
\left\{\begin{array}{l}
\varphi(t)=\arctan \left(c_{3} t-\frac{c_{3}}{w} \sin w t+10 c_{1}-20 c_{3}\right)\left\{\begin{array}{l}
t=20 \Rightarrow \varphi(t) \approx-11.3^{\circ} \\
t=30 \Rightarrow \varphi(t)=45^{\circ}
\end{array}\right. \\
v_{1}=0, v_{2}=\frac{1}{\cos ^{2} \varphi} u_{2}
\end{array}\right.
\end{gathered}
$$

Ex. Differential wheeled robot simulation results

(a) Displacement versus time

(b) Input versus time

Conclusion

- The control inputs switch between two different modes to accomplish the cosine switch control.
- Cosine functions with unknown coefficients are taken as control inputs.
- After integrating operation and obtaining the expression of terminal configuration, we can solve the undetermined coefficients by substituting boundary conditions.
- Cosine function is used to avoid the mutations of velocity and acceleration at switching time.

Homework

- Modeling, simulation and Robot motion Animation of the proposed method using MATLAB, C++ or python. Visualize the results and graphs.
- Write a code in PICC compiler or Arduino IDE to make two de motors rotate in specific velocity values (setpoints) for a specific time. You can detect these values from your simulation results and store it in a vector.

حَــامعة
الـَمَـنارة

انتهت المحاضرة

