CHDCD301: Nathematics Engineering
Exercises 4: Series and Residues: Part A

Ramez Koudsieh, Ph.D.
Faculty of Engineering
Department of Robotics and Intelligent Systems
Manara University

1. Find the circle and radius of convergence of the given power series

$$
\sum_{k=1}^{\infty} \frac{1}{k}\left(\frac{i}{1+i}\right)^{k} z^{k} \quad \sum_{k=1}^{\infty} \frac{1}{k^{2}(3+4 i)^{k}}(z+3 i)^{k} \quad \sum_{k=0}^{\infty}(-1)^{k}\left(\frac{1+2 i}{2}\right)^{k}(z+2 i)^{k}
$$

2. Show that the power series $\sum_{k=1}^{\infty} \frac{(z-i)^{k}}{k 2^{k}}$ is not absolutely convergent on its circle of convergence. Determine at least one point on the circle of convergence at which the power series converges
3. Expand the given function in a Maclaurin series

$$
f(z)=\frac{i}{(z-i)(z-2 i)} \quad f(z)=\frac{z-7}{z^{2}-2 z-3}
$$

3. Expand the given function in a Taylor series centered at the indicated point. Give the radius of convergence of each series

$$
f(z)=\frac{1}{1+z}, z_{0}=-i \quad f(z)=\frac{z-1}{z-3}, z_{0}=1 \quad f(z)=\frac{1+z}{1-z}, z_{0}=i
$$

4. (a) Suppose the principal branch of the logarithm $f(z)=\log z=\ln |z|+i \operatorname{Arg} z$ is expanded in a Taylor series with center $z_{0}=-1+i$. Explain why $R=1$ is the radius of the largest circle centered at $z_{0}=-1+i$ within which f is analytic.
(b) Show that within the circle $|z-(-1+i)|=1$ the Taylor series for f is

$$
\log z=\frac{1}{2} \ln 2+\frac{3 \pi}{4} i-\sum_{k=1}^{\infty} \frac{1}{k}\left(\frac{1+i}{2}\right)^{k}(z+1-i)^{k}
$$

(c) Show that the radius of convergence for the power series in part (b) is $R=\sqrt{2}$. Explain why this does not contradict the result in part (a).
5. (a) Consider the function $f(z)=\log (1+z)$. What is the radius of the largest circle centered at the origin within which f is analytic?
(b) Expand f in a Maclaurin series. What is the radius of convergence of this series?
(c) Use the result in part (b) to find a Maclaurin series for $\log (1-z)$.
(d) Find a Maclaurin series for

$$
\log \left(\frac{1+z}{1-z}\right)
$$

6. Find a Maclaurin series for $\operatorname{erf}(z)$

$$
\operatorname{erf}(z)=\frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-t^{2}} d t
$$

7. Expand $f(z)=\frac{z}{(z+1)(z-2)}$ in a Laurent series valid for the indicated annular domain

$$
0<|z+1|<3 \quad|z+1|>3 \quad 1<|z|<2 \quad 0<|z-2|<3
$$

8. Determine the order of the poles for the given function

$$
f(z)=\frac{\cot \pi z}{z^{2}} \quad f(z)=\frac{1-\cosh z}{z^{4}} \quad f(z)=\frac{\sin z}{z^{2}-z}
$$

