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Chapter 5

Fourier Analysis

1. Orthogonal Functions

2. Fourier Series

3. Fourier Cosine and Sine Series

4. Complex Fourier Series

5. Fourier transform

6. Boundary-Value Problems in Rectangular Coordinates
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1. Orthogonal Functions

Inner Product

(1) u, v = v, u 

(2) u, v + w = u, v + u, w 

(3) c u, v = cu, v 

(4) v, v  0 and v, v = 0 if and only if v = 0 

▪ Let u, v, and w be vectors in a real vector space V, and let c be any scalar. An 

inner product on V is a function that associates a real number u, v with each 

pair of vectors u and v and satisfies the following axioms:

▪ Note: u, v = u.v = dot product (Euclidean inner product for Rn)
n

i i
i

u v
=


1
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▪ Definition: The inner product of two piecewise-continuous functions f1 and f2 

on an interval [a, b] is the number:

1 2 1 2, ( ) ( )
b

a
f f f x f x dx  = 

Orthogonal Functions

▪ Definition: Two functions f1 and f2 are said to be orthogonal on an interval 

[a, b] if:

1 2 1 2, ( ) ( ) 0
b

a
f f f x f x dx  = =

▪ Example 1: Orthogonal Functions

The functions f1(x) = x2 and f2(x) = x3 are orthogonal on the interval [−1, 1].
1

1 12 3 5 6
1 2 1 1

1

1
, 0

6
f f x x dx x dx x

− −
−


  = = = =
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▪ Definition: The norm, or length, of a vector u is given by:

Orthogonal Sets

▪ Definition: A set of real-valued functions {0(x), 1(x), 2(x), …} is said to be 

orthogonal on an interval [a, b] if:

, ( ) ( ) 0,
b

m n m na
x x dx m n     = = 

Orthonormal Sets
1,

, ( ) ( )
0,

b

m n m na

m n
x x dx

m n
   

=
  = = 




▪ If {n(x)} is an orthogonal set of functions on the interval [a, b] with                for 

n = 0, 1, 2, …, then {n(x)} is said to be an orthonormal set on the interval.
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▪ Example 3: Norms

▪ Example 2: Orthogonal Set of Functions

Show that the set {1, cos x, cos 2x, …} is orthogonal on the interval [−, ]

  
1 1

1, cos cos sin sin sin ( ) 0nx nxdx nx n n
n n

 


 

−−
  = = = − − =

 
1

cos , cos cos cos cos ( ) cos ( )
2

1 sin ( ) sin ( )
0,

2

mx nx mx nxdx m n x m n x dx

m n x m n x
m n

m n m n

 

 





− −

−

  = = + + −

+ − 
= + =  + − 

 

Find the norms of each function in the orthogonal set given in Example 2
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▪ Note: Any orthogonal set of nonzero functions {n(x)}, n = 0, 1, 2, …, can be 

normalized—that is, made into an orthonormal set—by dividing each function 

by its norm.

For example the set is orthonormal on [−, ].

▪ Theorem 1 (Coordinates relative to a basis): If B = {n(x)}, n = 0, 1, 2, …, is an 

orthogonal basis for an inner product space V = C [a, b], and if f is any vector 

in V, then
( ) ( )n n

n

f x c x


=

= 
0

 2 1
2

( ) cos cos 1 cos 2 , 0n x nx nxdx nx dx n
 

 
 

− −
= = = + =  
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where
( ) ( ),

( ) ( )

b

nn a
n

n n

f x x dxf
c

x x



 

 
= =


2 2

{n(x)} is an orthogonal basis: 
,

( ) ( )
( )

n
n

n n

f
f x x

x








=

 
=  2

0

{n(x)} is an orthonormal basis: ( ) , ( )n n
n

f x f x 


=

=  
0

▪ Definition: A set of real-valued functions {0(x), 1(x), 2(x), …} is said to be 

orthogonal with respect to a weight function w(x) on an interval [a, b] if:

, ( ) ( ) ( ) 0,
b

m n m na
w x x x dx m n     = = 

where w(x) is a positive continuous function
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1 2 1 2, ( ) ( ) ( )
b

a
f f f x f x w x dx  = 

▪ Note: The inner product of two functions f1 and f2 on an interval [a, b], used 

above is :

▪ The set {1, cos x, cos 2x, …} in Example 2 is orthogonal with respect to the 

weight function w(x) = 1 on the interval [−, ].

▪ The series                            is said to be an orthogonal series expansion of f or 

a generalized Fourier series.

( ) ( )n n
n

f x c x


=

= 
0

Complete Sets

▪ To expand f in a series of orthogonal functions, it is certainly necessary that f 
not be orthogonal to each n of the orthogonal set {n(x)}.
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(If f were orthogonal to every n, then cn = 0, n = 0, 1, 2, ….)

▪ To avoid the latter problem we shall assume that an orthogonal set is 

complete. This means that the only continuous function orthogonal to each 

member of the set is the zero function.

▪ Note: Suppose that {0(x), 1(x), 2(x), …} is an infinite set of real-valued 

functions that are continuous on an interval [a, b]. If this set is linearly 

independent on [a, b], then it can always be made into an orthogonal set using 

Gram-Schmidt process.

Orthogonal Polynomials

▪ Let P∞ be the vector space of all polynomials and define the inner product of 

two polynomials P and Q, on P∞ by:
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, ( ) ( ) ( )
b

a
P Q P x Q x w x dx  = 

▪ Let P0(x), P1(x), ... be a sequence of polynomials with deg Pn(x) = n for each n. 

If           whenever m ≠ n, then {Pn(x)} is said to be a sequence of 

orthogonal polynomials. If                       , then {Pn(x)} is said to be a sequence 

of orthonormal polynomials.

, 0m nP P  =

,m n mnP P   =

Legendre Polynomials

1 1( 1) ( ) (2 1) ( ) ( )n n nn P x n xP x nP x+ −+ = + −

1

1
, ( ) ( )m n m nP P P x P x dx

−
  = 

Pn(1) = 1 for each n, then

2 2
( ) , 0 1

2 1
nP x n

n
= =

+
, ,
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21
0 1 2 2

3 4 21 1
3 42 8

( ) 1 ( ) ( ) (3 1)

( ) (5 3 ) ( ) (35 30 3)

P x P x x P x x

P x x x P x x x

= = = −

= − = − +

2(1 ) ( ) 2 ( ) ( 1) ( ) 0n n nx P x xP x n n P x − − + + =

Chebyshev Polynomials

1 1/2

1
, ( ) ( )(1 )m n m nT T T x T x x dx−

−
  = −

1
0 1, 2 ( 1, 2, ...)k

ka a k−= = =

2 2

0 ( ) , ( ) , 1 2
2

nT x T x n


= = = , ,

(cos ) cos and cos( 1) 2cos cos cos( 1)  gives:nT n n n n     = + = − −

1 0 1 1( ) ( ), ( ) 2 ( ) ( ), 1n n nT x xT x T x xT x T x n+ −= = − 
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2
0 1 2

3 4 2
3 4

( ) 1 ( ) ( ) 2 1

( ) 4 3 ( ) 8 8 1

T x T x x T x x

T x x x T x x x

= = = −

= − = − +

2 2(1 ) ( ) ( ) ( ) 0n n nx T x xT x n T x − − + =

Hermite Polynomials
2

, ( ) ( ) x
m n m nH H H x H x e dx

 −

−
  = 

0 1

1 1

( ) 1, ( ) 2

( ) 2 ( ) 2 ( ), 1n n n

H x H x x

H x xH x nH x n+ −

= =

= − 

2
( ) 2 !, 0 1n
nH x n n= = , ,

( ) 2 ( ) 2 ( ) 0n n nH x xH x nH x − + =
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Laguerre Polynomials

0
, ( ) ( ) x

m n m nL L L x L x e dx
 −  = 

1 1( 1) ( ) (2 1 ) ( ) ( )n n nn L x n x L x nL x+ −+ = + − −

21
0 1 2 2

3 2 4 3 21 1
3 46 24

( ) 1 ( ) 1 ( ) ( 4 2)

( ) ( 9 18 6) ( ) ( 16 72 96 24)

L x L x x L x x x

L x x x x L x x x x x

= = − + = − +

= − + − + = − + − +

(1 ) 0xy x y ny + − + =

2
( ) 1, 0 1nL x n= = , ,

2
0 1 2

3 4 2
3 4

( ) 1 ( ) 2 ( ) 4 2

( ) 8 12 ( ) 16 48 12

H x H x x H x x

H x x x H x x x

= = = −

= − = − +
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Legendre Polynomials
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Chebyshev Polynomials
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2. Fourier Series

▪ In this section we shall expand functions in terms of a special orthogonal set 

of trigonometric functions.

▪ If {0(x), 1(x), 2(x), …} is a set of real-valued functions that is orthogonal on 

an interval [a, b] and if f is a function defined on the same interval, then we 

can formally expand f in an orthogonal series c00(x) + c11(x) + c22(x) + … . 

Trigonometric Series

▪ The set of trigonometric functions

, cos , cos , cos , , sin , sin , sin , x x x x x x
L L L L L L

      
 
 

2 3 2 3
1

is orthogonal on the interval −L, L].
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▪ Expand a function f defined on −L, L] in an orthogonal series consisting of 

the trigonometric functions.

( ) cos sinn n
n

n n
f x a a x b x

L L
 

=

 = + + 
 

0
1

( ) ( ),

( ) ( )

L

nn L
n

n n

f x x dxf
c

x x



 

−
 

= =


2 2

The coefficients a0, a1, a2, …, b1, b2, …, can be determined using

( ) ( ) cos cos ,,
L L

nL L

n n
x dx L x x x dx L n

L L
 

 
− −

= = = = = =  
2

2 2 2 2
0 1 2 0

( ) sin sin ,
L

n L

n n
x x x dx L n

L L
 


−

= = = 
2

2 2 0
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( ) ( )

( )

( )

( ) cos

( ) sin

L

L

L

L

nL

n

n L

L

n L

a f x dx
L

n
a f x xdx

L L
n

b f

f x x dx

x xd
L L

x

x









−

−

−

−






= 




=

=

=









2

0

1

2
1

1

Fourier coefficients of f

▪ Definition: The Fourier series of a function f defined on the interval (−L, L) is 

given by:

( ) cos sinn n
n

n n
f x a a x b x

L L
 

=

 = + + 
 

0
1

where
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( ) ( ) cos

( ) sin

L L

nL L

L

n L

n
a f x dx a f x xdx

L L L
n

b f x xdx
L L





− −

−

= =

=

 



0

1 1

2
1

▪ Example 4: Expansion in a Fourier Series

Expand                                             in a Fourier series
,

( )
,

x
f x

x x


 

−  
=  −  

0 0
0

( ) ( )a f x dx x dx
 






 −
= = − = 0 0

1 1

2 2 4

cos ( )
( ) cos ( ) cos

n

n

n
a f x nxdx x nxdx

n n

 






   −

− − −
= = − = =  2 20

11 1 1 1
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( )sin ( )sinnb f x nxdx x nxdx
n

 




 −
= = − = 0
1 1 1

( )
( ) cos sin

n

n

f x nx nx
nn







=

 − −
= + + 

 
 2
1

1 1 1
4

Convergence of a Fourier Series

▪ Theorem 2 (Conditions for Convergence): Let f and f’ be piecewise continuous 

on the interval [−L, L]; that is, let f and f’ be continuous except at a finite 

number of points in the interval and have only finite discontinuities at these 

points. Then for all x in the interval (−L, L) the Fourier series of f converges to 

f(x) at a point of continuity. At a point of discontinuity, the Fourier series 

converges to the average ( ) ( )f x f x+ −+

2
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▪ Example 5: Convergence of a Point of Discontinuity

The function in Example 4 satisfies the conditions of Theorem 2. Thus for every 

x in the interval (−L, L), except at x = 0, the series will converge to f(x). At x = 0 

the function is discontinuous, and so the series will converge to

( ) ( )f f  + −+ +
= =

0 0 0
2 2 2

at x = /2 the series converge to f(/2) = /2. 

( )
cos sin

   





=

 − −
= + + 

 


n

n

n n
nn21

1 1 1
2 4 2 2


= − + − +

1 1 1
1

4 3 5 7
at x = 0 the series converge to /2. 
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▪ The right hand side of equation above is 2L-periodic; indeed, 2L is the 

fundamental period of the sum. 

Periodic Extension

( ) cos sinn n
n

n n
f x a a x b x

L L
 

=

 = + + 
 

0
1

( )
cos sin

 





=

 − −
= + + 

 


n

n

n n
nn21

1 1 1
0 0

2 4




 = + + + 
 2 2 2

2 1 1 1
4 1 3 5


= + + +
2

2 2 2

1 1 1
8 1 3 5
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▪ We conclude that a Fourier series not only represents the function on the 

interval (−L, L) but also gives the periodic extension of f outside this interval.

▪ We may assume from the outset that the given function is periodic with period 

T = 2L; that is, f(x + T) = f(x).

▪ When f is piecewise continuous and the right-and left-hand derivatives exist at 

x = −L and x = L, respectively, then the series converges to [f(L−) + f (−L+)]/2 at 

these endpoints and to this value extended periodically to ±3L, ±5L, ±7L, and 

so on.

▪ Fourier series in example 4 converges to the periodic extension of f(x) on the 

entire x-axis. 

▪ At 0, ±2, ±4, …, and at ±, ±3, ±5, …, the series converges to the values:
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( ) ( ) ( ) ( )
and

f f f f  + − − ++ + −
= =

0 0
0

2 2 2
respectively. The solid dots in figure below represent the value /2.

Sequence of Partial Sums

▪ It is interesting to see how the sequence of partial sums {SN(x)} of a Fourier 

series approximates a function. In example 4, the first three partial sums are:

( ) , ( ) + cos sin , ( ) + cos sin sinS x S x x x S x x x x
  

 
= = + = + +0 1 2

2 2 1
2

4 4 4 2
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