CRIDC301: Engineering Nathematics
 Lecture Notes: Fourier Analysis: Part B

Ramez Koudsieh, Ph.D.
 Faculty of Engineering
 Department of Robotics and Intelligent Systems
 Manara University

2022-2023

Chapter 5
Fourier Analysis

1. Orthogonal Functions
2. Fourier Series
3. Fourier Cosine and Sine Series
4. Complex Fourier Series

Fourier transform
6. Boundary-Value Problems in Rectangular Coordinates

3. Fourier Cosine and Sine Series

Cosine and Sine Series

- Definition: Fourier Cosine and Sine Series
(i) The Fourier series of an even function on the interval $(-L, L)$ is the cosine series

$$
f(x)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi}{L} x
$$

where $a_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x, \quad a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi}{L} x d x$
(ii) The Fourier series of an odd function on the interval $(-L, L)$ is the sine series

$$
f(x)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi}{L} x \text { where } b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi}{L} x d x
$$

- Example 6: Expansion in a Sine Series

Expand $f(x)=x,-2<x<2$, in a Fourier series
The given function is odd on the interval ($-2,2$), and so we expand f in a sine series. With the identification $2 L=4$, we have $L=2$.

$b_{n}=\int_{0}^{2} x \sin \frac{n \pi}{L} x d x=\frac{4(-1)^{n+1}}{n \pi} \Rightarrow f(x)=\sum_{n=1}^{\infty} \frac{4(-1)^{n+1}}{n \pi} \sin \frac{n \pi}{2} x$
The series converges to the function on $(-2,2)$ and the periodic extension (of period 4).

- Example 7: Expansion in a Sine Series

Expand $f(x)=\left\{\begin{array}{cc}-1, & -\pi<x<0 \\ 1 & 0 \leq x<\pi\end{array}\right.$ in a Fourier series
The given function is odd on the interval $(-\pi, \pi)$, and so we expand f in a sine series.

$$
b_{n}=\frac{2}{\pi} \int_{0}^{\pi} \sin \frac{n \pi}{L} x d x=\frac{2}{\pi} \frac{1-(-1)^{n}}{n} \Rightarrow f(x)=\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1-(-1)^{n}}{n} \sin n x
$$

Gibbs Phenomenon

- The partial sums $\left\{S_{N}(x)\right\}$ of a Fourier series shows oscillations (spikes) near the points of discontinuity of $f(x)$. these oscillations don't disappear as the value of N gets larger. With increasing N, they are shifted closer to the points of discontinuity of $f(x)$. This behavior is known as the Gibbs phenomenon.

حَــامعة
الـَمَـنارة

Half-Range Expansions

- When we are interested in representing a function that is defined on an interval $(0, L)$ by a trigonometric series.
- This can be done in many different ways by supplying an arbitrary definition of the function on the interval $(-L, 0)$. Three most important cases:

Even reflection

Odd reflection

Identity reflection

Even reflection: The function is even on the interval $(-L, L)$

$$
\begin{gathered}
f(x)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi}{L} x \\
a_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x, \quad a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi}{L} x d x
\end{gathered}
$$

Odd reflection: The function is odd on the interval $(-L, L)$

$$
f(x)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi}{L} x \quad b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi}{L} x d x
$$

Identity reflection: The function values on the interval $(-L, 0)$ are the same as the values on $(0, L)$. We identify $L \rightarrow L / 2$ and The resulting Fourier series will give the periodic extension of the function with period L.

- Example 8: Half Range Expansion

Expand $f(x)=x^{2}, 0<x<L$, (a) in a cosine series, (b) in a sine series, (c) in a Fourier series.
(a) $a_{0}=\frac{1}{L} \int_{0}^{L} x^{2} d x=\frac{1}{3} L^{2}, \quad a_{n}=\frac{2}{L} \int_{0}^{L} x^{2} \cos \frac{n \pi}{L} x d x=\frac{4 L^{2}(-1)^{n}}{n^{2} \pi^{2}}$

$$
f(x)=\frac{1}{3} L^{2}+\sum_{n=1}^{\infty} \frac{4 L^{2}(-1)^{n}}{n^{2} \pi^{2}} \cos \frac{n \pi}{L} x
$$

(b) $b_{n}=\frac{2}{L} \int_{0}^{L} x^{2} \sin \frac{n \pi}{L} x d x=\frac{2 L^{2}(-1)^{n+1}}{n \pi}+\frac{4 L^{2}}{n^{3} \pi^{3}}\left[(-1)^{n}-1\right]$

$$
f(x)=\frac{2 L^{2}}{\pi} \sum_{n=1}^{\infty}\left\{\frac{(-1)^{n+1}}{n}+\frac{2}{n^{3} \pi^{3}}\left[(-1)^{n}-1\right]\right\} \sin \frac{n \pi}{L} x
$$

(c) $a_{0}=\frac{1}{L} \int_{0}^{L} x^{2} d x=\frac{1}{3} L^{2}, \quad a_{n}=\frac{2}{L} \int_{0}^{L} x^{2} \cos \frac{2 n \pi}{L} x d x=\frac{L^{2}}{n^{2} \pi^{2}}$

$$
b_{n}=\frac{2}{L} \int_{0}^{L} x^{2} \sin \frac{2 n \pi}{L} x d x=\frac{-L^{2}}{n \pi}
$$

$$
f(x)=\frac{1}{3} L^{2}+\frac{L^{2}}{\pi}\left\{\sum_{n=1}^{\infty} \frac{L^{2}}{n^{2} \pi} \cos \frac{2 n \pi}{L} x-\frac{1}{n} \sin \frac{2 n \pi}{L} x\right\}
$$

(a) Cosine series

Parseval formula

For a full Fourier Series on $[-L, L]: f(x)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi}{L} x+b_{n} \sin \frac{n \pi}{L} x\right)$

$$
\frac{1}{L} \int_{-L}^{L}[f(x)]^{2} d x=2 a_{0}^{2}+\sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right)
$$

- Example 9: Expansion in a Sine Series

The Fourier series for the function $f(x)=x(-\pi<x<\pi): f(x)=2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin n x$

$$
\begin{gathered}
\frac{1}{\pi} \int_{-\pi}^{\pi} x^{2} d x=\sum_{n=1}^{\infty}\left(\frac{2(-1)^{n+1}}{n}\right)^{2} \Rightarrow \frac{2 \pi^{2}}{3}=\sum_{n=1}^{\infty} \frac{4}{n^{2}} \\
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
\end{gathered}
$$

Differentiation of Fourier Series

- Theorem 3 (Differentiation of Fourier series): Let f be a continuous function on the interval $[-L, L]$ such that $f(-L)=f(L)$, and suppose also that f^{\prime} is piecewise continuous on the interval $(-L, L)$. Then for any x strictly inside the interval at which $f^{\prime \prime}(x)$ exists, the derivative of $f(x)$ can be obtained by term-by-term differentiation of the Fourier series representation of f. So, if f has the Fourier series representation:
then

$$
f(x)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi}{L} x+b_{n} \sin \frac{n \pi}{L} x\right)
$$

$$
f^{\prime}(x)=\frac{\pi}{L} \sum_{n=1}^{\infty}\left(-n a_{n} \sin \frac{n \pi}{L} x+n b_{n} \cos \frac{n \pi}{L} x\right) \quad \text { for }-L<x<L
$$

except for points at where $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ are not defined.

- Note: Not all Fourier series are differentiable.
- Example 10: a Series is not differentiable

The Fourier series for the function $f(x)=x(-\pi<x<\pi)$ converges to $f(x)$ at each point in the interval $-\pi<x<\pi$:

$$
f(x)=2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin n x
$$

But the differentiated series

$$
2 \sum_{n=1}^{\infty}(-1)^{n+1} \cos n x
$$

does not converge since its nth term fails to approach zero as n tends to infinity.

- Example 11: a Series is differentiable The Fourier series for the function $f(x)=\cosh a x(-\pi \leq x \leq \pi) a \neq 0$

$$
\cosh a x=\frac{\sinh a \pi}{a \pi}\left[1+2 a^{2} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{a^{2}+n^{2}} \cos n x\right]
$$

This series converges to cosh $a x$ on the interval $-\pi \leq x \leq \pi$. The hypothesis of the theorem is satisfied when, it follows that:

$$
\sinh a x=\frac{2 \sinh a \pi}{\pi} \sum_{n=1}^{\infty}(-1)^{n+1} \frac{n}{a^{2}+n^{2}} \sin n x \quad-\pi<x<\pi
$$

- Note: The equation above is valid when the condition $a=0$ is dropped.

Integration of Fourier Series

- Theorem 4 (Integration of Fourier series): A Fourier series of a piecewise smooth function f can always be integrated term by term and the result is a convergent infinite series that always converges to the integral of f on $[-L, L]$:

$$
f(x)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi}{L} x+b_{n} \sin \frac{n \pi}{L} x\right)
$$

the equation

$$
\int_{-L}^{x} f(u) d u=a_{0}(x+L)+\frac{L}{\pi} \sum_{n=1}^{\infty}\left[\frac{a_{n}}{n} \sin \frac{n \pi}{L} x-\frac{b_{n}}{n}\left(\cos \frac{n \pi}{L} x+(-1)^{n+1}\right)\right]
$$

is valid when $-L \leq x \leq L$.

- Example 12: Integration of Fourier Series Use the Fourier series representation of the function $f(x)=\left\{\begin{array}{cc}-1, & -\pi<x<0 \\ 1, & 0<x<\pi\end{array}\right.$ to find a Fourier series representation of $F(x)=\int_{-\pi}^{x} f(t) d t$ in the interval $-\pi<x<\pi$

$$
f(x)=\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2 n-1} \sin (2 n-1) x
$$

$$
\begin{gathered}
F(x)=\frac{4}{\pi} \sum_{n=1}^{\infty} \int_{-\pi}^{x} \frac{\sin (2 n-1) t}{2 n-1} d t=-\frac{4}{\pi}\left[\sum_{n=1}^{\infty} \frac{\cos (2 n-1) x}{(2 n-1)^{2}}-\sum_{n=1}^{\infty} \frac{\cos (2 n-1) \pi}{(2 n-1)^{2}}\right] \\
F(x)=-\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos (2 n-1) x}{(2 n-1)^{2}}-\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}
\end{gathered}
$$

applying the Parseval formula to the Fourier series representation of $f(x)$

$$
\begin{gathered}
\frac{1}{\pi} \int_{-\pi}^{\pi} 1 \cdot d x=\sum_{n=1}^{\infty}\left(\frac{4}{\pi} \frac{1}{2 n-1}\right)^{2} \Rightarrow 2=\frac{16}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}} \Rightarrow \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}=\frac{\pi^{2}}{8} \\
\Rightarrow \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}=\frac{\pi^{2}}{8} \\
F(x)=-\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos (2 n-1) x}{(2 n-1)^{2}}-\frac{4}{\pi} \frac{\pi^{2}}{8}=-\frac{\pi}{2}-\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos (2 n-1) x}{(2 n-1)^{2}}
\end{gathered}
$$

$$
\begin{gathered}
F(x)=\int_{-\pi}^{x} f(t) d t= \begin{cases}\int_{-\pi}^{x}-1 d t=-(x+\pi), & -\pi<x<0 \\
\int_{-\pi}^{0}-1 d t+\int_{0}^{x} 1 d t=x-\pi, & 0<x<\pi\end{cases} \\
F(x)=\int_{-\pi}^{x} f(t) d t=|x|-\pi \\
F(x)=|x|-\pi=-\frac{\pi}{2}-\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos (2 n-1) x}{(2 n-1)^{2}} \\
|x|=\frac{\pi}{2}-\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos (2 n-1) x}{(2 n-1)^{2}}-\pi \leq x \leq \pi
\end{gathered}
$$

- Example 13: A Fourier-Legendre expansion

The Fourier-Legendre expansion of the discontinuous function

$$
\begin{gathered}
f(x)= \begin{cases}0, & -1<x<0 \\
1, & 0<x<1\end{cases} \\
f(x)=\sum_{n=0}^{\infty} a_{n} P_{n}(x)=a_{0}+a_{1} P_{1}(x)+\cdots \\
a_{n}=\frac{2 n+1}{2} \int_{-1}^{1} P_{n}(x) d x \\
a_{0}=\frac{1}{2}, \quad a_{1}=\frac{3}{4}, \quad a_{2}=0, \quad a_{3}=-\frac{7}{16}, \cdots \\
f(x)=\frac{1}{2} P_{0}(x)+\frac{3}{4} P_{1}(x)-\frac{7}{16} P_{3}(x)+\cdots
\end{gathered}
$$

4. Complex Fourier Series

- In certain applications, for example, the analysis of periodic signals in electrical engineering, it is actually more convenient to represent a function f in an infinite series of complex-valued functions of a real variable x such as the exponential functions $e^{i n x}, n=0,1,2, \ldots$, and where i is the imaginary unit.

Complex Fourier Series

$$
\begin{array}{r}
f(x)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi}{L} x+b_{n} \sin \frac{n \pi}{L} x\right) \\
\cos \frac{n \pi}{L} x=\frac{e^{i n \pi x / L}+e^{-i n \pi x / L}}{2}, \quad \sin \frac{n \pi}{L} x=\frac{e^{i n \pi x / L}-e^{-i n \pi x / L}}{2 i} \\
f(x)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \frac{e^{i n \pi x / L}+e^{-i n \pi x / L}}{2}+b_{k} \frac{e^{i n \pi x / L}-e^{-i n \pi x / L}}{2 i}\right)
\end{array}
$$

$$
\begin{gathered}
f(x)=a_{0}+\sum_{n=1}^{\infty}\left(\frac{1}{2}\left(a_{n}-i b_{n}\right) e^{i n \pi x / L}+\frac{1}{2}\left(a_{n}+i b_{n}\right) e^{-i n \pi x / L}\right) \\
f(x)=c_{0}+\sum_{n=1}^{\infty} c_{n} e^{i n \pi x / L}+\sum_{n=1}^{\infty} c_{-n} e^{-i n \pi x / L}
\end{gathered}
$$

where

$$
\begin{gathered}
c_{0}=a_{0}=\frac{1}{2 L} \int_{-L}^{L} f(x) d x \\
c_{n}=\frac{1}{2}\left(a_{n}-i b_{n}\right)=\frac{1}{2 L} \int_{-L}^{L} f(x) e^{-i n \pi x / L} d x \\
c_{-n}=\frac{1}{2}\left(a_{n}+i b_{n}\right)=\frac{1}{2 L} \int_{-L}^{L} f(x) e^{i n \pi x / L} d x
\end{gathered}
$$

- Definition: The complex Fourier series of a function f defined on the interval $(-L, L)$ is given by:
where

$$
f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n \pi x / L}
$$

$$
c_{n}=\frac{1}{2 L} \int_{-L}^{L} f(x) e^{-i n \pi x / L} d x, \quad n=0, \pm 1, \pm 2, \ldots
$$

- Note: When the function f is real, c_{n} and c_{-n} are complex conjugates: $c_{-n}=\bar{c}_{n}$
- Note: The functions $e^{i m \pi a d L}$ and $e^{-i n \pi x d L}$ are orthogonal over the interval $[-L, L]$.

$$
\int_{-L}^{L} e^{i m \pi x / L} e^{-i n \pi x / L} d x=\left\{\begin{array}{cl}
0, & m \neq n \\
2 L, & m=n
\end{array}\right.
$$

- If f satisfies the hypotheses of Theorem 2, a complex Fourier series converges to $f(x)$ at a point of continuity and to the average at a point of discontinuity.

$$
\frac{1}{2}\left[f\left(x^{+}\right)+f\left(x^{-}\right)\right]
$$

- Example 14: Complex Fourier Series Expand $f(x)=e^{-x},-\pi<x<\pi$, (a) in a complex Fourier series.

$$
\begin{gathered}
c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-x} e^{-i n x} d x=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-(i n+1) x} d x=\frac{1}{2 \pi(i n+1)}\left[e^{-(i n+1) \pi}-e^{(i n+1) \pi}\right] \\
c_{n}=(-1)^{n} \frac{\left(e^{\pi}-e^{-\pi}\right)}{2(i n+1) \pi}=(-1)^{n} \frac{\sinh \pi}{\pi} \frac{1-n i}{n^{2}+1}
\end{gathered}
$$

$$
f(x)=\frac{\sinh \pi}{\pi} \sum_{n=-\infty}^{\infty}(-1)^{n} \frac{1-n i}{n^{2}+1} e^{i n x} \quad \begin{aligned}
& \text { The series converges to the } \\
& 2 \pi \text {-periodic extension of } f
\end{aligned}
$$

Fundamental Frequency

- The Fourier series define a periodic function and the fundamental period of that function (that is, the periodic extension of f) is $T=2 L$.

$$
a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \omega x+b_{k} \sin n \omega x\right) \quad \text { and } \quad \sum_{n=-\infty}^{\infty} c_{n} e^{i n \omega x}
$$

where number $\omega=2 \pi / T$ is called the fundamental angular frequency.

Frequency Spectrum

- If f is periodic and has fundamental period T, the plot of the points $\left(n \omega,\left|c_{n}\right|\right)$, where ω is the fundamental angular frequency and the c_{n} are the Fourier coefficients, is called the frequency spectrum of f.
- Example 15: Frequency Spectrum From example 14:

$$
\left|c_{n}\right|=\frac{\sinh \pi}{\pi} \frac{1}{\sqrt{n^{2}+1}}
$$

- Example 16: Frequency Spectrum Find the frequency spectrum of the periodic square wave or periodic pulse. The wave is the periodic extension of the function $y=f(x)$:

$$
f(x)= \begin{cases}0, & -\frac{1}{2}<x<-\frac{1}{4} \\ 1, & -\frac{1}{4}<x<\frac{1}{4} \\ 0, & \frac{1}{4}<x<\frac{1}{2}\end{cases}
$$

$$
\left.c_{n}=\int_{-1 / 4}^{1 / 4} 1 \cdot e^{-2 i n \pi x} d x=-\frac{e^{-2 i n \pi x}}{2 i n \pi}\right]_{-1 / 4}^{1 / 4}=\frac{1}{n \pi} \frac{e^{i n \pi / 2}-e^{-i n \pi / 2}}{2 i}=\frac{1}{n \pi} \sin \frac{n \pi}{2}
$$

$$
\left|c_{n}\right|=\frac{1}{n \pi}\left|\sin \frac{n \pi}{2}\right|
$$

