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Chapter 5

Fourier Analysis

1. Orthogonal Functions

2. Fourier Series

3. Fourier Cosine and Sine Series

4. Complex Fourier Series

5. Fourier transform

6. Boundary-Value Problems in Rectangular Coordinates
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3. Fourier Cosine and Sine Series

Cosine and Sine Series

▪ Definition: Fourier Cosine and Sine Series

(i) The Fourier series of an even function on the interval (-L, L) is the cosine

series

( ) , ( )cos
L L

n

n
a f x dx a f x xdx

L L L


= = 0 0 0

1 2

( ) cosn
n

n
f x a a x

L


=

= +0
1

where

(ii) The Fourier series of an odd function on the interval (-L, L) is the sine

series
( ) sinn

n

n
f x b x

L


=

= 
1

( )sin
L

n

n
b f x xdx

L L


= 0
2

where
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▪ Example 6: Expansion in a Sine Series

Expand f(x) = x, -2 < x < 2, in a Fourier series

The given function is odd on the interval (-2, 2), and

so we expand f in a sine series. With the

identification 2L = 4, we have L = 2.

( ) ( )
sin ( ) sin

n n

n
n

n n
b x xdx f x x

L n n

 

 

+ +

=

- -
= =  = 

1 12

0
1

4 1 4 1

2

The series converges to

the function on (-2, 2) and

the periodic extension (of

period 4).
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▪ Example 7: Expansion in a Sine Series

Expand in a Fourier series
,

( )
x

f x
x





- - < <
=   <

1 0
1 0

The given function is odd on the interval (-, ), and

so we expand f in a sine series.

( ) ( )
sin ( ) sin

n n

n
n

n
b xdx f x nx

L n n

 

  



=

- - - -
= =  = 0

1

2 2 1 1 2 1 1

Gibbs Phenomenon

▪ The partial sums {SN(x)} of a Fourier series shows oscillations (spikes) near

the points of discontinuity of f(x). these oscillations don’t disappear as the

value of N gets larger. With increasing N, they are shifted closer to the points

of discontinuity of f(x). This behavior is known as the Gibbs phenomenon.
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Half-Range Expansions

▪ When we are interested in representing a function that is defined on an

interval (0, L) by a trigonometric series.

▪ This can be done in many different ways by supplying an arbitrary definition of

the function on the interval (-L, 0). Three most important cases:

Even reflection Odd reflection Identity reflection
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Even reflection: The function is even on the interval (-L, L)

( ) , ( )cos
L L

n

n
a f x dx a f x xdx

L L L


= = 0 0 0

1 2

( ) cosn
n

n
f x a a x

L


=

= +0
1

Odd reflection: The function is odd on the interval (-L, L)

( ) sinn
n

n
f x b x

L


=

= 
1

( )sin
L

n

n
b f x xdx

L L


= 0
2

Identity reflection: The function values on the interval (-L, 0) are the same as

the values on (0, L). We identify L → L/2 and The resulting Fourier series will

give the periodic extension of the function with period L.
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▪ Example 8: Half Range Expansion

Expand f(x) = x2, 0 < x < L, (a) in a cosine series, (b) in a sine series, (c) in a

Fourier series.

(a) 
( )

, cos
nL L

n

n L
a x dx L a x xdx

L L L n





-
= = = = 

2
2 2 2

0 2 20 0

1 1 2 4 1

3

( )
( ) cos

n

n

L n
f x L x

Ln







=

-
= +

2
2

2 2
1

1 4 1
3

(b) 
( )

sin [( ) ]
nL n

n

n L L
b x xdx

L L n n



 

+-
= = + - -

2 1 2
2

3 30

2 2 1 4
1 1

( )
( ) [( ) ] sin

n
n

n

L n
f x x

n Ln



 

 +

=

 -
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 


2 1

3 3
1

2 1 2
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(c) , cos
L L

n

n L
a x dx L a x xdx

L L L n




= = = = 

2
2 2 2
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3

( ) cos sin
n

L L n n
f x L x x

L n Ln

 
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 
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2
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sin
L

n

n L
b x xdx

L L n





-
= =

2
2

0

2 2
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Parseval formula

For a full Fourier Series on [-L, L]: ( ) cos sinn n
n

n n
f x a a x b x

L L
 

=

 = + + 
 

0
1

  ( )( )
L

n nL
n

f x dx a a b
L



-
=

= + +
2 2 2 2

0
1

1
2

▪ Example 9: Expansion in a Sine Series

The Fourier series for the function f(x) = x (- < x <  ):
( )

( ) sin
n

n

f x nx
n

 +

=

-
= 

1

1

1
2

2( )n

n n

x dx
n n









 +

-
= =

 -
=  = 

 
 

21 2
2

2
1 1

1 1 2 4
3

n n



=

=
2

2
1

1
6
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Differentiation of Fourier Series

▪ Theorem 3 (Differentiation of Fourier series): Let f be a continuous function on

the interval [-L, L] such that f(-L) = f(L), and suppose also that f’ is piecewise

continuous on the interval (-L, L). Then for any x strictly inside the interval at

which f’’(x) exists, the derivative of f(x) can be obtained by term-by-term

differentiation of the Fourier series representation of f. So, if f has the Fourier

series representation:

( ) cos sinn n
n

n n
f x a a x b x

L L
 

=

 = + + 
 

0
1then

( ) sin cosn n
n

n n
f x na x nb x

L L L
  

=

  = - + 
 


1

for -L < x < L

except for points at where f’(x) and f’’(x) are not defined.
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▪ Note: Not all Fourier series are differentiable.

▪ Example 10: a Series is not differentiable

The Fourier series for the function f(x) = x (- < x < ) converges to f(x) at each

point in the interval - < x <  :

( )
( ) sin

n

n

f x nx
n

 +

=

-
= 

1

1

1
2

But the differentiated series

( ) cosn

n

nx


+

=

- 1

1

2 1

does not converge since its nth term fails to approach zero as n tends to infinity.

▪ Example 11: a Series is differentiable

The Fourier series for the function f(x) = cosh ax (-  x  ) a  0

https://manara.edu.sy/


https://manara.edu.sy/Fourier Analysis 15/26

sinh ( )
cosh cos

n

n

a
ax a nx

a a n







=

 -
= + + 

2 2 2
1

1
1 2

This series converges to cosh ax on the interval -  x  . The hypothesis of

the theorem is satisfied when, it follows that:

2sinh
sinh ( ) sinn

n

a n
ax nx

a n






+

=

= -
+

 1
2 2

1

1 - < x < 

▪ Note: The equation above is valid when the condition a = 0 is dropped.

Integration of Fourier Series

▪ Theorem 4 (Integration of Fourier series): A Fourier series of a piecewise

smooth function f can always be integrated term by term and the result is a

convergent infinite series that always converges to the integral of f on [-L, L]:
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( ) cos sinn n
n

n n
f x a a x b x

L L
 

=

 = + + 
 

0
1

the equation

( ) ( ) sin cos ( )
x nn n

L
n

a bL n n
f u du a x L x x

n L n L
 




+

-
=

  = + + - + -    


1
0

1

1

is valid when -L  x  L.

Use the Fourier series representation of the function                                        to

▪ Example 12: Integration of Fourier Series

 ,
( )

,

x
f x

x




- - < <
=

< <

1 0
1 0

find a Fourier series representation of                            in the interval - < x < ( ) ( )
x

F x f t dt
-

= 

( ) sin ( )
n

f x n x
n



=

= -
-

1

4 1
2 1

2 1
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sin ( ) cos ( ) cos ( )
( )

( ) ( )

x

n n n

n t n x n
F x dt

n n n



 

  

-
= = =

- - - 
= = - - - - - 

   2 2
1 1 1

2 1 2 1 2 14 4
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cos ( )
( )

( ) ( )n n

n x
F x

n n 

 

= =

-
= - -

- -
 2 2
1 1

2 14 4 1

2 1 2 1

applying the Parseval formula to the Fourier series representation of f(x)

( ) ( )n n n

dx
n n n







  

  

-
= = =

  =  =  = 
-  - -

  
2 2

2 2 2
1 1 1

1 4 1 16 1 1
1 2

2 1 82 1 2 1

cos ( ) cos ( )
( )

( ) ( )n n

n x n x
F x

n n

 

  

 

= =

- -
= - - = - -

- -
 

2

2 2
1 1

2 1 2 14 4 4
8 22 1 2 1

( )n n



=

 =
-


2

2
1

1
82 1
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( ),
( ) ( )

,

x

x

x

dt x x
F x f t dt

dt dt x x







 

 

-

-

-

 - = - + - < <
= = 

- + = - < <




 
0

0

1 0

1 1 0

cos ( )
( )

( )n

n x
F x x

n








=

-
= - = - -

-
 2
1

2 14
2 2 1

( ) ( )
x

F x f t dt x



-

= = -

cos ( )

( )n

n x
x

n







=

-
= -

-
 2
1

2 14
2 2 1

-  x  
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▪ Example 13: A Fourier–Legendre expansion

The Fourier–Legendre expansion of the discontinuous function

 ,( )
,

x
f x

x
- < <

=
< <

0 1 0
1 0 1

( ) ( ) ( )n n
n

f x a P x a a P x


=

= = + + 0 1 1
0

( )n n
n

a P x dx
-

+
= 

1

1

2 1
2

, , , ,a a a a= = = = -0 1 2 3
1 3 7

0
2 4 16

( ) ( ) ( ) ( )f x P x P x P x= + - +0 1 3
1 3 7
2 4 16
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4. Complex Fourier Series

Complex Fourier Series

▪ In certain applications, for example, the analysis of periodic signals in

electrical engineering, it is actually more convenient to represent a function f
in an infinite series of complex-valued functions of a real variable x such as

the exponential functions einx, n = 0, 1, 2, …, and where i is the imaginary unit.

( ) cos sinn n
n

n n
f x a a x b x

L L
 

=

 = + + 
 

0
1

/ / / /

cos , sin
in x L in x L in x L in x Ln e e n e e

x x
L L i

    - -+ -
= =

2 2
/ / / /

( )
in x L in x L in x L in x L

n k
n

e e e e
f x a a b

i

    - -

=

 + -
= + + 

 
0
1

2 2
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/ /( ) ( ) ( )in x L in x L
n n n n

n

f x a a ib e a ib e 


-

=

 = + - + + 
 

0
1

1 1
2 2

/ /( ) in x L in x L
n n

n n

f x c c e c e 
 

-
-

= =

= + + 0
1 1

where

( )
L

L
c a f x dx

L -
= = 0 0

1

2

/( ) ( )
L in x L

n n n L
c a ib f x e dx

L
-

-
= - = 
1 1

2 2

/( ) ( )
L in x L

n n n L
c a ib f x e dx

L


- -
= + = 
1 1

2 2
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▪ Definition: The complex Fourier series of a function f defined on the interval

(-L, L) is given by:

where

/( ) in x L
n

n

f x c e 


=-

= 

/( ) , , , ,
L in x L

n L
c f x e dx n

L
-

-
= =  
1

0 1 2
2

▪ Note: When the function f is real, cn and c-n are complex conjugates:

▪ Note: The functions eimπx/L and e-inπx/L are orthogonal over the interval [-L, L].

n nc c- =

/ /
,

,

L im x L in x L

L

m n
e e dx

L m n
 -

-


= 

=


0

2
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[ ( ) ( )]f x f x+ -+1
2

▪ If f satisfies the hypotheses of Theorem 2, a complex Fourier series converges

to f(x) at a point of continuity and to the average

at a point of discontinuity.

▪ Example 14: Complex Fourier Series

Expand f(x) = e-x, - < x < , (a) in a complex Fourier series.

( ) ( ) ( )

( )

x inx in x in in
nc e e dx e dx e e

in

   

   

- - - + - + +

- -
 = = = -
 + 

1 1 11 1 1

2 2 2 1

sinh( )
( ) ( )

( )

n n
n

e e ni
c

in n

  

 

-- -
= - = -

+ +2
1

1 1
2 1 1

sinh
( ) ( )n inx

n

ni
f x e

n







=-

-
= -

+
 2

1
1

1
The series converges to the 

2-periodic extension of f.
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Fundamental Frequency

( )cos sin and in x
n k n

n n

a a n x b n x c e  
 

= =-

+ + 0
1

▪ The Fourier series define a periodic function and the fundamental period of

that function (that is, the periodic extension of f) is T = 2L.

where number  = 2/T is called the fundamental angular frequency.

Frequency Spectrum

▪ If f is periodic and has fundamental period T, the plot of the points (n, |cn|),

where  is the fundamental angular frequency and the cn are the Fourier

coefficients, is called the frequency spectrum of f.
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▪ Example 15: Frequency Spectrum

sinh
nc

n




=

+2

1

1

From example 14:

▪ Example 16: Frequency Spectrum

Find the frequency spectrum of the periodic

square wave or periodic pulse. The wave is

the periodic extension of the function y = f(x):
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,

( ) ,

,

x
f x x

x

 - < < -


= - < <
 < <

1 1
2 4
1 1
4 4

1 1
4 2

0
1
0
/

/ /
/

/
/

sin
in x in in

in x
n

e e e n
c e dx

in n i n

  
 

  

- -
-

-
-

 -
=  = - = =




1 42 2 21 4 2

1 4
1 4

1 1
1

2 2 2

sinn

n
c

n




=
1

2
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