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Chapter 5
Fourier Analysis

5. Fourier transform

6. Boundary-Value Problems in Rectangular Coordinates
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5. Fourier transform
» Fourier series enable functions and solutions of linear systems defined over a
finite interval to be represented as an infinite series of sines and cosines. This

suffices for many physical problems.

= When working with partial differential equations that describe heat conduction
and diffusion in a half-space, Fourier series cannot be used.

» |f a nonperiodic function is to be represented over an arbitrarily large interval,
some generalization of a Fourier series is required.

» Letting L — oo in a Fourier series leads to the introduction of a different type of
representation called a Fourier integral representation, where the function f(x)
is defined for all x and need not be periodic. This representation forms the
basis of an integral transform called the Fourier transform.
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X . L .
f(SU) _ Z Cnemim/L, Cn _ %J‘_L f(x)e—znﬂx/de

n=—00

f(.fC) _ i nmx/L 21L f( )6—m7ru/Ldu

N =—00

Let w, = na/l and Aw, = w,,, — @, = 7 L

f(z) = % i F(o)e'"Aw,, Flo) = jLL f(w)e ™™ Ly

n=—oo

As L - oo o, - wand Aw, — dw

(z) = % [ e do,  F)=[" f@)e™de
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Fourier Transform and Its Inverse |

F(w) = _[OO f(zx)e"dr  Fourier transform

f(x) = FHF (o) = Q—I F(w)e'”dw  Inverse Fourier transform
7T

= Theorem 5 (Existence of the Fourier Transform): If f{x) is absolutely integrable

on the x-axis and piecewise continuous on every finite interval, then the
Fourier transform F(w) exists.

= Example 17: Fourier Transform

Find the Fourier transform of f(x) =1 if [x] < 1 and f{x) = 0 otherwise.

—10X 1 1

1 _i- _e _ L _w)_ i Slna)_ 5 Q
Fw)=[ 1-e"ds=— _1—_w)(e e') =2"— —2s1nc(ﬂ)
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= Example 18: Fourier Transform

Find the Fourier transform of f(x) = e *if z>0and {z)=0if <0, a>0

6—(a+z’a))x ®©

—(a + 1w)

1
a+ 1w

F(w) = _EO e ™ ey =

0

= Example 19: Fourier Transform for the Delta Dirac Function
0 ifx#0
o) = {undeﬁned if 2 =0
D&z~ a)=fla)&az-a) [ f(2)5(z-a)dz = f(a)
Fio@} = [ s@ye de=e"| =1

=0

Fio@@-a)} = [ s@—a)e dz ="

and |~ S(z)dz =1

—10a
= €
T=a
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properties of the Fourier transform

= Theorem 6 (Linearity of the Fourier Transform): The Fourier transform is a
linear operation; that is, for any functions f(r) and g¢(x) whose Fourier
transforms exist and any constants a and b, the Fourier transform of af + bg

exists, and
Flaf(x) +bg(2)} = aF{f(2)} +bF{g(x)}

= Theorem 7 (Differentiation in the time domain): Let f{x) be continuous on the z-
axis and flx) — 0 as |2] — oo. Furthermore, let f’(x) be absolutely integrable on

the r-axis. Then
Fi' (@)} =i0F{f(v)}
F" (@)} = (i0)" Fif(2)}
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= Theorem 8 (Differentiation in the frequency domain): Let f{x) be a continuous
and differentiable function with an n times differentiable Fourier transform

F(w). Then J
Jiaf(z)y =1 [F(w)]
Fla"f(2)} =

for all n such that F\""(w) — 0 as || — o

= Example 20: Fourier Transform
Find the Fourier transform of f(x) = e a>0

The function f{z) is continuous and differentiable for all x and

o | 22 © 22 1 po 2 N/
j ‘e” dazz_“ e ‘Pde==| e "du=—"
—00 —00

Q J—o a
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absolutely integrable over the interval (—oo, o). f{z) satisfies the differential
equation: f'+ 2a?zf= 0.
Fif (@) + 20> Fi{zf(z)} = 0 = 20°F'(0) + oF () = 0

2

jF’da) = —%J‘wdw = InF(w) = —4%22 +Ind = F(w) = Ae_‘l%2
F(w) = J‘j; f(x)e"dr = F(0) = A = _Eo f(x)dx = %
F(w) = F{f(z)} = ﬁ_

Fourier transform of a Gaussian

f(z) = e* Normalized Gaussian function I_OO e dy =1
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2
0

F(w) = F{f(z)} = e *
o=21f=F(f)=e""
The Gaussian f(x) = e is its own Fourier transform.

Convolution property
(F*o)@) = [ fhg—tdt =] fla—t)g(t)dt

» Theorem 9 (The convolution theorem for Fourier transforms): Let the functions
flx) and ¢(x) be piecewise continuous, bounded, and absolutely integrable over
(—o0, o0) with the respective Fourier transforms F(w) and G(®). Then

FAS =9 2)} = Fif(2); Flg(2)} = Flo)G(o)

and, conversely,
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(@) = 5= | F(o) G(o)e ™ do

= Example 21: Fourier Transform

It was shown in Example 17 that the function flx) = 1 if |2 <1 and flx) =0
otherwise, has the Fourier transform F(w) = 2sinc(w/ ), so by the convolution

theorem it follows that F{(f * f)(z)} = F(®)F(®) = 4sinc*(@/ )
Confirm this result by calculating (f * f)(z) and finding its Fourier transform.

-l<t<z+1L(-2<z<0)
otherwise

fofa-n=1;

L z-1<t<,(0<z<2)
JOf(z =1) = {O, otherwise
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(ex+l B
dt=2+2, (-2<x<0)
(f * NHx) =17 and (f * f)(z) = 0 otherwise
_1dt=2—a:, 0<z<?2)

FiF* D@y = [ @+ 2)e de + [ @ - 2)e ™ da

:21—00520):4sin2a)

. T
— 4sinc’ (—)
0 0 w

2 2

Parseval formula

= Theorem 10 (The Parseval relation for the Fourier transforms): If f{z) has the
Fourier transforms F(w), Then

[ lf@fde = 5= [ |F@)f do
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» Example 22: Using Parseval formula
Using the result of Example 17 and the Parseval relation, show that
jw sin” @
o g2

The Fourier transform of flz) =1 if |2 < 1 and f{x) = 0 otherwise is

do =7

SIN @
F =2
(@) =22
1 00 t 0 2 00 f a2
j 12dxz2:L 481n2a)da):>_‘- SQOda):ﬂ
—1 27[ —00 a) —00 a)

» Theorem 11 (Fourier transforms involving scaling = by q, shifting xz by a, and
shifting o by a,): If f{z) has the Fourier transforms F(w), Then:
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Fif(az)} = %F(w/a), >0

Fif(x-a)} =" F(w)

Fle ™" f(2)} = F(o - a)
Duality property

() = —— [ F@)e“ do = 2nf(z) = j“; F(w)e'da = j“; F()e*dA

277 d—»
27 f( — @) = ji F(A)e ™ dA = jz F(z)e “dr = F{F(z)}
FIF@)} = 27/( - )

= Example 23: Fourier transform of f{z) = 1
Find the Fourier transform of f{z) =1

Fourier Analysis https://manara.edu.sy/ 14/28


https://manara.edu.sy/

[y

6)liaJl

F(o) = Ji f(x)e "™ dx = f " e7©%dy could not be evaluated

The signal flx) = 1 does not satisfy the existence conditions; it is neither
absolute integrable nor square integrable. Its FT does not converge.

Hot)=1 = JF1}=2nd-ow) = 2niw)

» Example 24: Fourier transform of the signum function 4 f(x) = sgn(x)
-1, <0 1
f(2) = sgn(x) = { . ,
0 : o0 :
F(w) = j_ (—De"dx + jo D e "“"dx 1

The two integrals cannot be evaluated. Instead, we will define an
iIntermediate signal f (z) as:
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—™, <0
—ax

x) = , where ¢ > 0 1
R0 {e , >0 \
0 . 00 _ . 7/20)
F W) = __al za)tdt + at zwtdt — _
(@)= [ (—e)e J, (e a2+m2\—1

F(w) = F{sgn(x)} = lim [— a2722a) } = l

a—0 4 (02 (200
» Example 25: Fourier transform of the unit step function I
0, <0 R
f(x) = H(z) = {1, =50

F{H(x)} = f; H(z)e " dx = _[: e "*dxz  could not be evaluated
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H(7) = ¥ + ¥ sgn(z) = FH(2)} = F{% + ¥ sgn(2)}
FiH(@)} = 78 (@) + -~

6. Boundary-Value Problems in Rectangular Coordinates
Separable Partial Differential Equations PDEs

= A PDE is an equation that contains one or more partial derivatives of an
unknown function, call it «, that depends on at least two variables. Usually one
of these deals with time ¢ and the remaining with space (spatial variable(s)).

» The most important PDEs are the wave equations that can model the vibrating
string and the vibrating membrane, the heat equation for temperature in a bar
or wire, and the Laplace equation for electrostatic potentials.
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= PDEs are very important in dynamics, elasticity, heat transfer, electromagnetic
theory, and quantum mechanics.

» PDEs, like ordinary differential equations (ODEs), are classified as either
linear or nonlinear.

* The dependent variable u and its partial derivatives in a linear PDE are only to
the first power. We shall be interested in linear second-order PDEs.

Example 26: Important Second-Order PDEs

2 2
o u 5 O U . . .
— =c —= One-dimensional wave equation

ot oz’

ou_ 2

E_C ox*

One-dimensional heat equation
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3 + " =0 Two-dimensional Laplace equation
x Yy

82u 2 82’& 82’& ) ) :

ﬁ =c A + 8y2 Two-dimensional wave equation

» the general form of a linear second-order PDE is given by:
O°u o*u o*u ou ou
A—+B +C—+D—+FE—+Fu=0G
O’ 0x0y oy’ ox oY
where the coefficients A, B, C, ..., G are functions of x and y. When G(z, y) = 0,

the equation is said to be homogeneous; otherwise, it is nonhomogeneous.

= A solution of a linear PDE is a function u(z, y) of two independent variables
that possesses all partial derivatives occurring in the equation and that
satisfies the equation in some region of the zy-plane.
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= [t is often difficult to obtain a general solution of a linear second-order PDE. In
general, the totality of solutions of a PDE is very large. For example, the
functions: u = 2> —¢°, w=-e"cosy, wu=sinzcoshy, u =In(z’>+ y*)which are
entirely different from each other, are solutions of 2D Laplace equation.

» Thus our focus throughout will be on finding particular solutions of some of the
more important linear PDEs.

= There are several methods that can be tried to find particular solutions of a
linear PDE, the one we are interested is called the method of separation of
variables. In this method we seek a particular solution of the form of a product
of a function of x and a function of y: u(z,v) = X(2) Y (v)

Ou_ xry, Qu_xy, QU _ gy Oy
oz oy ox? oy”
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» Example 27: Separation of Variables
o*u ou
Find product solutions of — =4—
P oz’ oy
Substituting w(z,y) = X(x) Y (y) into the partial differential equation
" _ 4 X” _ z
X"Y =4XY' = 5 G

Since the left-hand side of the last equation is independent of y and is
equal to the right-hand side, which is independent of z, we conclude that
both sides of the equation are independent of zand .

X” Y!
Xyt
X"+42X =0 and Y +AY =0
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Case | If =0, then the two ODEsare: X"=0andY' =0
X=c¢+crandl =¢, >u=XY =A +Bx
Casell If A=-0?<0, then the two ODEs are:
X' —4e°X =0and Y' —a’Y =0
X =c,cosh2ax + csinh2ax and ¥V = 066“2?’
= u=XY = Aze“chosh 20 + B2e“2ysinh 201
Case lll If A= a? > 0, then the two ODEs are:
X" +4a°X =0and Y + &Y =0

. 2
X =ccos2ax + csin2ax and Y = ce ™’

J— 2 J— 2 .
= u=XY = Ae “cos2ax + B,e ” ’sin2az

Fourier Analysis
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= Theorem 12 (Superposition princvihﬁigj: If w,, u,, ..., u, are solutions of a
homogeneous linear partial differential equation, then the linear combination
U= ciuy + Uy + .. + cu, Where the ¢, =1, 2, ..., k, are constants, is also a

solution.

= Definition: classification of equations
The linear second-order partial differential equation

2 2 2
Aa—u+B O'u +Oa—u+Da—u+Ea—u+Fu=G
or? 0x0Y oy” ox oy
where the coefficients A, B, C, ..., G are real constants, is said to be

hyperbolic if B-4AC >0,
parabolicif B?-4AC=0,
elliptic if B?2-4AC<0.
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Heat Equation: Solution by Fourier Series iy '
2 | i
a—uzcza—u, O<z<L, t>0 Q 9 3
ot ox’
w©,t) =0, w(L,t)=0, t>0 boundary conditions
w(z, 0) = f(z), O0<x<L Initial condition
X” T'
w(z,t) = X(2)T(t) = X " 27 —A

X" +2X=0 and T +c°AT =0

w0,8) = X(O)T() =0 and w(L,t)=X(L)T(t) =0
T(t) 0 forall t= X(0)=0and X(L)=0

X"+2X =0, X0)=0, X(L)=0
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X(x) = ¢ + ¢y, A=0
X(z) = cecoshaz + c,sinhaz, A=-a’ <0
X(x) = ¢cosaz + cysin ax, A=a’>0
= When the boundary conditions X(0) = 0 and X(L) = 0 are applied to the first and
second equations, these solutions yield only X(z) =0, so u=0.

= But when X(0) = 0 is applied to the third equation, we find that ¢, = 0 and X(z) =
¢, sin ax. The second boundary condition then implies that X(L) = ¢, sin o = 0.

= To obtain a nontrivial solution, we must have ¢, # 0 and sin oL = 0. So alL = nx
or o= nnal L.

* Hence X” + 41X =0 possesses nontrivial solutions when:

A =a =n'nlI, n=12,3,...
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= These values of 4 are the elgenvalues of the problem; the eigenfunctions are:

X (z) = CQSHI%CIZ

T + AT =0 = T () =cee” ‘el

. nir 202 2,72 _ 2 2 nir
u (z,t) =X, (2)T (t) = CSIN —= 1 Cye clrm it Ae™ (7 /L )tsme

= Each of the product functions wu (z,f) is a particular solution of the partial
differential equation, and each v, (x,?) satisfies both boundary conditions as

well.
= The solution of the entire problem: by the superposition principle

u(x,t) = Zu (z,1) = ZA i LQ)tsme

26/28
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such a manner that: .
.
w(z,0) = f(x) = nZ::lAnsme

= Hence A, must be the coefficients of the Fourier sine series (half-range
expansion of fin a sine series), thus

2 L . N
A _f-.-o f(x)smedx

- L 2,2 2,72
w(z,t) = %Z(jo f(x)sin%xdxje_c (/L )tsin%x
n=1

In the special case when the initial temperature is u(z, 0) = 100, L = 7z, and
2 =
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200[1—(=1)"
n

An_

w(z, t)-% 1 (n D

n=1

SlIl nx

60

1

X

0

=
a3

0 05 1 15 2 25
u(zx, t) graphed as a function of u(z, t) graphed as a function of t
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