

5

كلية طب الاسنان

مبادئ البحث العلمي والاحصاء الحيوي

Methodology & Biostatistics

الأستاذ الدكتور محمود محمد ديب طيوب الفصل الدراسي الأول للعام 2023-2024

محاضرة رقم 5 اليوم الاحد تاريخ / / 2023

ثانيا - طرق العرض البياني للبيانات الإحصائية Graphic Presentation

1-3 مقدمة عامة.

2-3 طرق العرض البياني للبيانات الإحصائية.

3-2-1 الأعمدة البيانية.

2-2-3 المنحنيات البيانية

3-2-3 المجسمات البيانية

3-3 التمثيل البيائي للتوزيعات التكرارية.

3-3-1 مقدمة.

3-3-2 طرق عرض بيانات التوزيعات التكرارية

3-3-التمثيل البياني لتوزيعين تكرارين في شكل

م احد

3-1مقدّمة:

العرض البياني Graphic Presentation) عبارة عن تمثيل للقياسات أو البيانات المتعلّقة بظاهرة معينة / نوعية – كمية / بأشكال هندسية مرسومة حسب مقاييس معينة، لتوضيح سلوك هذه الظاهرة أو الصفة بالنسبة إلى عاملين مختلفين، بهدف إبراز بعض خصائص هذه الظاهرة أو لمقارنة قيم ظاهرة ما حسب المكان أو تطورها بحسب الزمن.

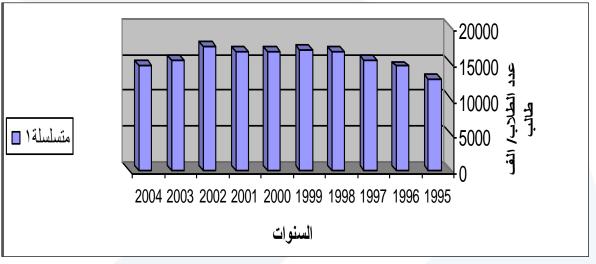
وأهم الشروط الواجب مراعاتها حتى تكون الأشكال الهندسية ذات فائدة أهمها:

- a. أن يكون لكل شكل بياني مهما كانت طبيعته عنواناً واضحاً ومختصراً.
- b. أن يعطى لكل شكل بياني رقم محدّد وفق طريقة ترقيم الأشكال المعتمدة.
 - c. تحميل الظواهر أو رموزها على محاور الإحداثيات.
- d. يجب أن يحدّد وحدة القياس المستخدمة وكذلك توضيح المقياس المستخدم.

2-3 : طرق العرض البياني للبيانات الإحصائية:

-a الأعمدة البيانية السيطة : Bar Charts

عبارة عن مستطيلات ترسم بعرض واحد وبأطوال مختلفة، حيث يدل الارتفاع على كمية البيانات المراد دراستها، وعادة يترك فواصل فيما بينها بحيث لا يتجاوز عرض الفاصل بين كل مستطيلين عرض قاعدة المستطيل الواحد تستخدم هذه الأعمدة في الحالات التالية:


- المقارنة بين قيم ظاهرة واحدة حسب المكان أو تطوره حسب الزمن.
 - المقارنة بين صفين أو أكثر.
 - مقارنة مكونات الظاهرة في مكانين مختلفين أو فترتين مختلفتين.

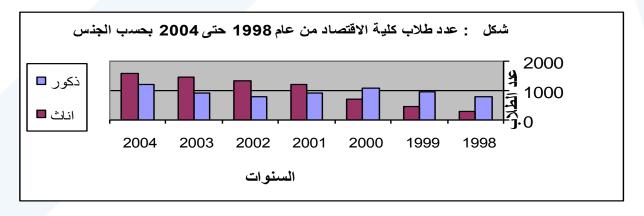
جدول يبين أعداد الطلاب خرىجى الجامعات السورية من 1995 ولغاية 2**004**

2004	2003	2002	2001	2000	1999	1998	1997	1996	1995	العام
14800	15500	17462	16755	16650			15400			عدد الطلاب

المطلوب: تمثيل هذه البيانات بواسطة الأعمدة البسيطة.

شكل2: تمثيل البيانات بواسطة الاعمدة البيانية البسيطة

b- الأعمدة البيانية المزدوجة:


تستخدم إذا كان الهدف من الرسم هو مقارنة بين ظاهرتين أو أكثر ولعدة سنوات، أو إذا كان لدينا بيانات مزدوجة بخواص مختلفة،

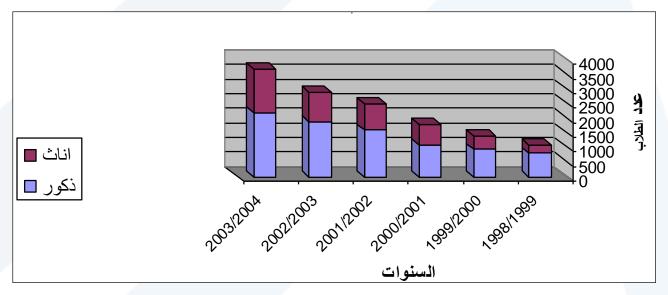
يبين عدد الطلاب في قسم الاقتصاد، بحسب الجنس من عام 1998 ولغاية 2004

مجموع	2004	2003	2002	2001	2000	1999	1998	السنة
	1200	920	800	900	1100	950	800	ذكور
	1600	1450	1350	1200	700	460	300	إناث

المصدر:فرضي

المطلوب: تمثيل هذه البيانات بطريقة الأعمدة البيانية المزدوجة.

شكل 3: تمثيل البيانات بواسطة الأعمدة البيانية المزدوجة



- الأعمدة البيانية المقسمة (المجزأة):

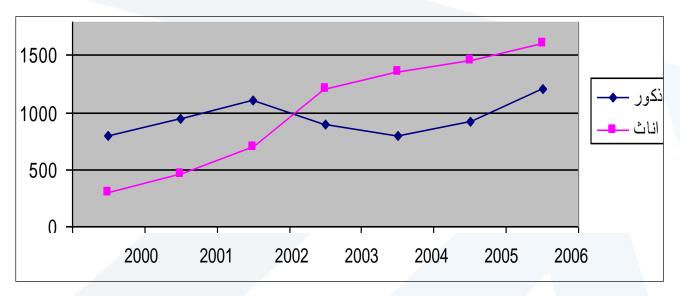
تستخدم في نفس الحالات التي تستخدم فيها الأعمدة البيانية المزدوجة، ويتم الحصول عليها برسم عمود واحد يمثل جملة الظواهر محل الدراسة في كل سنة، كما في حالة الأعمدة البسيطة ثم نقسم كل عمود إلى مكوناته حيث يقاس كل جزء مع العدد الذي يمثله ونميز بين الأجزاء بالتظليل أو الألوان.

مثال لنعود إلى معطيات الأعمدة البيانية المزدوجة، والمطلوب تمثيلها سابقاً.

2004/2003	2003/2002	2002/2001	2001/2000	2000/1999	1999/1998	السنوات
2200	1900	1600	1100	950	800	ذكور
1500	1000	900	700	460	300	إثاث

شكل 4: تمثيل عدد طلاب كلية الاقتصاد بواسطة الأعمدة البيانية المقسمة.

-2 الرسوم البيانية (الخطوط البيانية):


رسم هندسي يستخدم لتوضيح الاتجاه العام لتطور الظاهرة خلال فترة من الزمن ويتم الحصول عليه بتوزيع مجموعة من النقاط على مستوى المحاور، حيث يمثل المحور الأفقي الزمن، والمحور العمودي قيم الظاهرة ثم نوصل هذه النقاط بعضها بمنحنٍ متصل فنحصل على المنحني المطلوب.

مثال

لنعود إلى معطيات عدد الطلاب والطالبات من 2006/2000 والمطلوب تمثيلها بواسطة المنحنى:

1996/1995	1995/1994	1994/1993	1993/1992	1992/1991	1990/1991	السنوات
2200	1900	1600	1100	950	800	عدد الطلاب
1500	1000	900	700	460	300	عدد الطالبات

شكل 6: تطور عدد الطلاب والطالبات في الجامعة من عام 2004-1998

وتجدر الإشارة إلى أنه علينا رسم الأعمدة البيانية المقسمة بمقياس نسبي أي النسبة المئوية لكل جزء من أجزاء الظاهرة. ومن ثم نحدد النسبة المئوية التجميعية لتسهل عملية الرسم.

-2-3 المجسمات البيانية (الأشكال المساحية):

a- الدوائر البيانية:

تستخدم الدوائر أو أنصافها في كثير من الحالات في التمثيل البياني للبيانات الإحصائية، ويتم عرض البيانات بهذا الأسلوب إما بواسطة دوائر مستقلة أو تمثل البيانات على سطح دائرة واحدة، حيث يعزز الأسلوب الأخير تقسيم الدائرة أو نصف الدائرة وحتى ربع الدائرة إلى عدة أجزاء

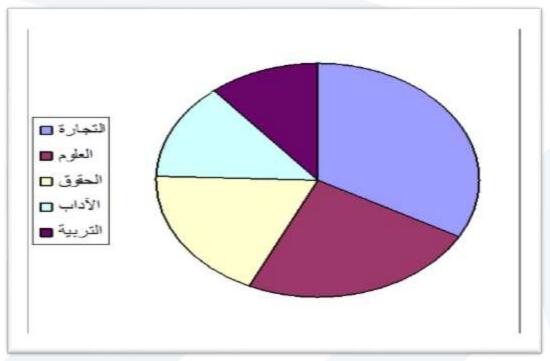
-عندما يراد تمثيل البيانات على سطح دائرة واحدة فقط، يتم وفق الآتي: إن مساحة الدائرة تساوي 360 وهي تقابل النسبة المئوية 1/00% أي أن مساحة القطاع المخصص للفئة أ تقابل زاوية مقدارها 1/1 درجة ونسبتها المئوية %p وبذلك يمكننا حساب الزاوية المقابلة للنسب المختلفة من العلاقة التالية:

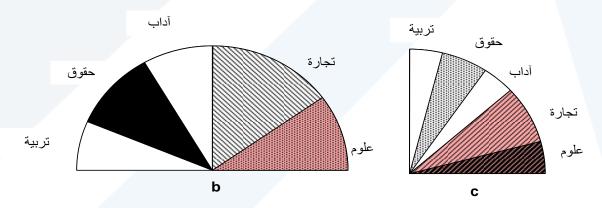
$$yi = \frac{360^{\circ} \times pi \%}{100} = \frac{360^{\circ} \times 32.98}{100} = 118.7^{\circ}$$

أو على سطح نصف دائرة:

$$yi = \frac{180^{\circ} \times pi \%}{100} = \frac{180^{\circ} \times 32.98}{100} = 59.36^{\circ}$$

$$yi = \frac{90^{\circ} \times pi \%}{100} = \frac{90^{\circ} \times 32.98}{100} = 29.68^{\circ}$$
(3-3)
$$= \frac{29.68^{\circ}}{100} = \frac{29.68^{\circ$$


$Y^{\circ} = 90$	<i>Y</i> ° =180	$Y^{\circ} = 360$	Pi%	عدد الطلاب	الكليات
29.66	59.56	118.7	23.98	12500	التجارة
21.6	43.2	86.4	24	9100	العلوم
16.83	33.66	64	18.70	7000	الحقوق
12.11	24.22	48.45	13.6	5100	الآداب
9.9	19.8	39.6	11	4200	التربية
்90	ໍ180	்360	%100	37900	المجموع


عدد طلاب بعض الكليات لعام2000 والمطلوب تمثيلها بواسطة دائرة بيانية واحدة.

لمصدر : فرضي

ويمكن رسمها بيانياً وفق الأشكال التالية:

شكل7: يوضح تمثيل البيانات على سطح دائرة (a) ، أو على سطح نصف دائرة (b)، أو على سطح ربع دائرة (c) (مثال فرضي للإيضاح)

تمثيل البيانات بواسطة دوائر مستقلة منفصلة

يجب أن تكون في هذه الحالة مساحات الدوائر متناسبة مع عدد المرادفات أو القياسات المطلقة أو التكرارات، ويمكن في هذه الحالة تكبير أو تصغير أنصاف أقطار الدوائر بشكل متناسب باستخدام معامل تناسب k واحد لكل القياسات علماً بأن معامل التناسب k يجب أن يكون مقداراً ثابتاً أي كل الدوائر. ونأخذ قيماً 10، 100، 100، 100... الخ. فإذا كان معامل التناسب $k \neq 0$ فإن نصف قطر الدائرة ri والتي مساحتها تمثل عدد القياسات ويحسب نصف القطر بالعلاقة التالية:

$$ri = \sqrt{\frac{ni}{\pi . k}}$$

حيث إن:

r: نصف قطر الدائرة.

n: عدد المفردات - القياسات - التكرارات - عدد السكان ... الخ.

 π = 3.14 تساوی π

k: معامل التناسب وقيمة 10، 100، 1000 الخ.

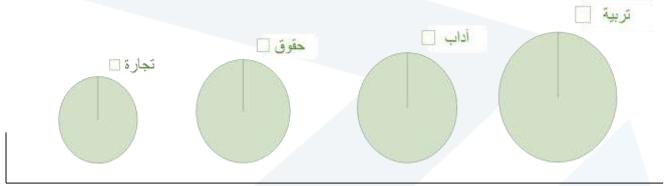
مثال

لنعود إلى معطيات المثال السابق (عدد طلاب الكليات لعام 2000)

والمطلوب تمثيلها بيانياً بواسطة دوائر مستقلة علماً بأن معامل التناسب k=100

الحل:

- نحسب نصف قطر الدائرة بالعلاقة السابقة:


$$ri = \sqrt{\frac{12500}{3.1416 \times 100}} = \sqrt{\frac{12500}{3.141593}} = \sqrt{39.788} = 6.3$$

و هكذا بالنسبة لباقى الكليات فنجد أن:

riنصف القطر	الكلية
6.308	التجارة
5.4	العلوم
4.7	الحقوق
4.03	الآداب
3.7	التربية

و عادة تستخدم هذه الطريقة في تمثيل البيانات الإحصائية لتوضيح تغيرات أو مقارنة مكونات ظاهرة معينة في مواقع جغرافية متعددة (بالخرائط البيانية) . حيث أن التفاوت في مساحات الدوائر تظهر تفاوت مكونات الظاهرة أو الظاهرة نفسها من منطقة لأخرى.

فإذا كان معلوماً نصف قطر الدائرة ri ومعامل التناسب k يمكننا إيجاد مقدار المفردات أو تعداد السكان أو الطلاب. وذلك بالعلاقة

$$ni = k \left(\pi . ri^2 \right)$$

مثال

إذا علمت أن معامل التناسب k=100 ونصف قطر الدائرة المعبرة عن عدد طلاب كلية التربية ri في هذه الكلية .

الحل:

بالاعتماد على الصيغة التالية نجد أن:

طالب 12500 = 12500 × 6.308²) = 12500 طالب

قيمة الثايت

 $\pi = 3.141592654 \approx 3.1416$

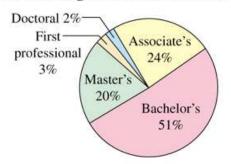
Solution: Constructing a Pie Chart

Type of degree	Frequency, f	Relative frequency	Central angle
Associate's	728	0.24	360°(0.24)≈86°
Bachelor's	1525	0.51	360°(0.51)≈184°
Master's	604	0.20	360°(0.20)≈72°
First professional	90	0.03	360°(0.03)≈11°
Doctoral	60	0.02	360°(0.02)≈7°

Σf= 3007

Solution: Constructing a Pie Chart

- Construct the pie chart using the central angle that corresponds to each category.
 - To find the central angle, multiply 360° by the category's relative frequency.
 - For example, the central angle for associate's degrees is


$$360^{\circ}(0.24) \approx 86^{\circ}$$

Solution: Constructing a Pie Chart

Type of degree	Relative frequency	Central angle
Associate's	0.24	86°
Bachelor's	0.51	184°
Master's	0.20	72°
First professional	0.03	11°
Doctoral	0.02	7°

Earned Degrees Conferred in 2007

From the pie chart, you can see that over one half of the degrees conferred in 2007 were bachelor's degrees.

- التمثيل البياني للتوزيعات التكرارية:

- طرق عرض بيانات التوزيعات التكرارية:
 - 1- المدرج التكراري.
 - 2- المضلع التكراري.
 - 3- المنحني التكراري.
- 4- المدرج التكراري التجميعي الصاعد والهابط.
- 5- المنحنى التكراري التجميعي الصاعد والهابط.

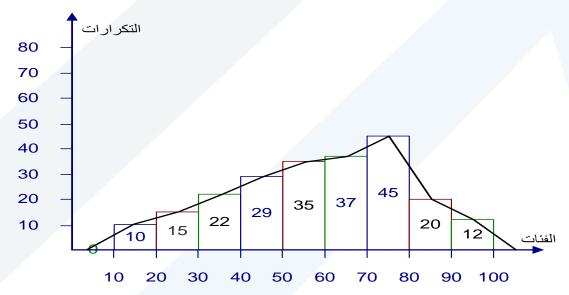
1- المدرج التكراري (histogram):

يستخدم المدرج التكراري في تمثيل توزيع الدرجات أو القيم وذلك برسم شكل بياني على هيئة مستطيلات متلاصقة لأن المتغيّر متصل ومن المستوى الفئوي أو النسبي و عدد المستطيلات يساوي عدد فئات التوزيع، وقاعدة كل منها هي الجزء الذي يمثل طول الفئة، وارتفاعه يمثل التكرار، والمساحة الكلية للمستطيلات تتناسب مع التكرار الكلي للتوزيع ولرسم المدرج التكراري، نرسم محورين متعامدين يمثل المحور الأفقي (السيني) فئات الدرجات، والخط أو المحور العمودي (الصادي) يمثل التكرارات $\binom{n_i}{n_i}$.

يبين الجدول التوزيع التكراري لدرجات225 طالباً في الإحصاء الوصفي.

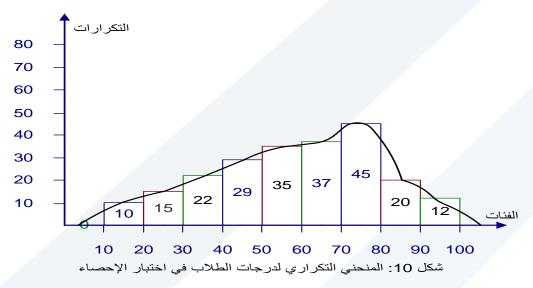
التكرارات التكرارات	الفئات
10	20-10
15	30-20
22	40-30
29	50-40
35	60-50
37	70-60
45	80-70
20	90-80
12	100-90
225	مجموع التكرارات

المطلوب: رسم المدرج التكراري لهذه الدرجات.



شكل 8: المدرج التكراري لدرجات 225 طالباً في الإحصاء

: Polygon de frequene- المضلع التكراري:


نجد أن تكرار كل فئة مركز في منتصف الفئة وهذا هو الفرق بين المدرج التكراري والمضلع التكراري. ولرسم المضلع التكراري نقوم برسم محورين متعامدين كما سبق في حالة المدرج التكراري ولكن يجب هنا أن نضيف فئتين إحداهما تسبق الفئة الدنيا والأخرى تعقب الفئة العليا. وتعدّ تكرار كل منها صفر، ثم نعين نقاط تناظر تكرار كل فئة (بما في ذلك الفئتان اللتان تكرار كل منها صفر) فوق منتصف كل فئة، وبعدها نصل بين هذه النقاط بخط منكسر، المضلع التكراري هو الخط المنكسر الواصل بين منتصفات القواعد العليا للمدرج التكراري والممتد من إحدى ناحيته إلى منتصف الفئة السابقة للتوزيع ومن الناحية الأخرى إلى منتصف الفئة التي تعقب فئات التوزيع. وبذلك يكون المضلع التكراري مقفلاً وتكون مساحته مساوية بالضبط لمساحة المدرج التكراري. مثال:

- المنحني التكراري:

هو المضلع التكراري نفسه بعد تهذيبه إذ يبدو على شكل منحني ممهد ،.

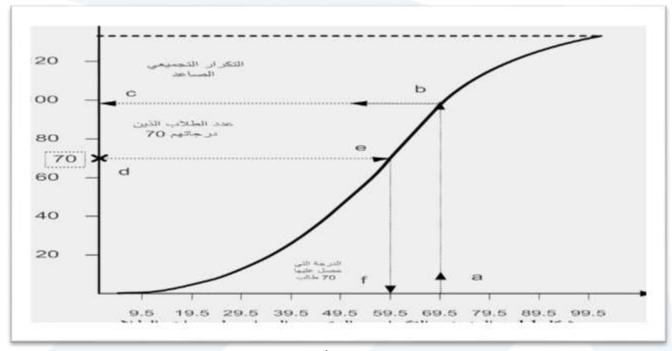
التمثيل البياني للتوزيعات التكرارية المتجمعة:

يمكن تمثيل التوزيعات التكرارية المتجمعة الصاعدة أو النازلة تمثيلاً بيانياً لتوضيح النزعات في علاقة التكرارات بفئات الدرجات.

مثال يبين جدول التوزيع التكراري درجات 130 طالباً في الإحصاء.

د الحقيقية العليا	الدنيا الحدو	الحدود الحقيقية	التكرار النازل	التكرار الصاعد	التكرارات	الفئات
19.5		9.5	130	4	4	19-10
29.5		19.5	126	17	13	29-20
39.5		29.5	113	36	19	39-30
49.5		39.5	94	58	22	49-40
59.5		49.5	72	81	23	59-50
69.5		59.5	49	98	17	69-60
79.5		69.5	32	114	16	79-70
89.5		79.5	16	123	9	89-80
99.5		89.5	7	130	7	99-90
-		-	-	-	130	المجموع

المطلوب: رسم المنحني التكراري التجميعي الصاعد والنازل.



- المنحني التكراري التجميعي الصاعد:

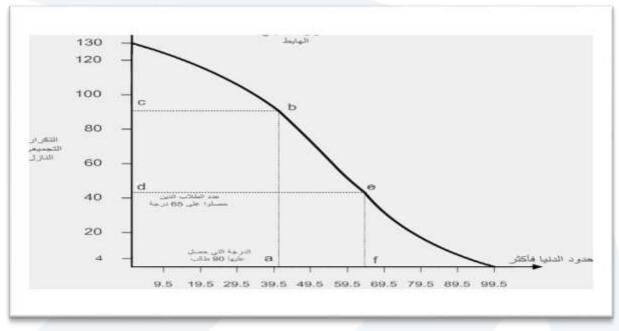
التكرار المجتمع الصاعد	الحدود الحقيقية العليا للفئات
0	أقل من 9.5
4	أقل من 19.5
17	أقل من 29.5
36	أقل من 39.5
58	أقل من 49.5
81	أقل من 59.5
98	أقل من 69.5
114	أقل من 79.5
123	أقل من 89.5
130	أقل من 99.5

من الشكل يمكننا الحصول على بعض المعلومات، فمثلاً لمعرفة عدد الطلاب الذين درجاتهم 70 درجة نرسم عمود من الدرجة 70 على المحور الأفقي في النقطة (a) باتجاه المنحني الصاعد وتقابله في النقطة (b) ومنها هذه النقطة نرسم خطأ مستقيماً باتجاه المحور العمودي للتكرار التجميعي الصاعد فيتقاطع معه في (c) فنحصل بذلك على عدد الطلاب الذين درجاتهم 70 فقط.

أما إذا أردنا معرفة الدرجة التي حصل عليها 70 طالباً من المجموعة فنحدد على المحور العمودي عدد الطلاب (70) في النقطة (d) ونرسم منها مستقيماً باتجاه المنحني الصاعد وعند نقطة التلاقي (e) نسقط خطاً عمودياً باتجاه المحور الأفقي لفئات الدرجات وعند نقطة التقاطع (f) معه نحصل على الدرجة التي حصل عليها 70 طالباً انظر الشكل.

- المنحنى التكراري التجميعي النازل:

يرسم المنحني التكراري التجميعي النازل بنفس الأسلوب الذي رسم به المنحني التكراري التجميعي الصاعد ما عدا كون ارتفاع النقاط هنا، هو التكرار التجميعي التنازلي ولذلك فيبدأ المضلع التكراري التجميعي التنازلي من أعلى نقطة (مجموع التكرارات الكلي) وينتهي بالصفر ، بعكس المنحني التكراري التجميعي الصاعد تماماً وذلك كما يلي:



التكرار المجتمع النازل	الحدود الحقيقية الدنيا فأكثر
130	9.5 فأكثر
126	19.5 فأكثر
113	29.5 فأكثر
94	39.5 فأكثر
72	49.5 فأكثر
49	59.5 فأكثر
32	69.5 فأكثر
16	79.5 فأكثر
7	89.5 فأكثر
صفر	99.5 فأكثر

جدول الحدود الحقيقية الدنيا للفئات فأكثر

من الرسم يمكننا استنتاج عدد الطلاب الذين حصلوا على حد معين فأكثر من الدرجات فمثلاً إذا أردنا معرفة عدد الطلاب الذين حصلوا على 65 درجة. نحدد النقطة أو الدرجة 65 على المحور الأفقي في النقطة (a) وتقيم منها عموداً باتجاه المنحني تتقاطع معه في النقطة (b) ومنها نرسم خطأ مستقيماً باتجاه محور التكرارات وعند نقطة التلاقي (c) نحصل على عدد الطلاب. أما إذا أردنا تحديد الدرجات أو الدرجة التي حصل عليها 90 طالباً نحدد عدد الطلاب على المحور العمودي في النقطة (d) ومنها نرسم مستقيماً باتجاه المنحني يتقاطع في النقطة (e) ومنها نسقط خطاً عمودياً باتجاه المحور الأفقي للدرجات وعند نقطة التلاقي (f) نحصل على الحد الأدنى للدرجة التي حصل عليها 90 طالباً انظر الشكل

طريقة الأغصان والأوراق لعرض البيانات الإحصائية:

شكل الأغصان والأوراق Stem – et – leaf Display يعد أحد الأساليب الكشفية المستحدثة التي توصل إليها توكي Tukey في تحليل البيانات الإحصائية. ويتميز هذا الأسلوب بأنه يعالج بعض أوجه قصور الأساليب التقليدية المستخدمة في التمثيل البياني لتوزيعات البيانات. فهذا الأسلوب يجمع بين ترتيب الدرجات ترتيباً تصاعدياً وتمثيلها تمثيلاً بصرياً.

خطوات التمثيل بواسطة الأغصان والأوراق:

- 1- يقسم كلا من الدرجات إلى جزأين فإذا كانت الدرجة تتكون من رقمين فإنه يفصل رقم خانة العشرات عن رقم خانة الأحاد. فمثلاً الدرجة (40) تكون رقم خانة العشرات (4) الذي يمثل الغصن stem ورقم خانة الآحاد (0) الذي يمثل الورقة leaf.
- 2- أما إذا كانت الدرجة تتكون من ثلاثة أرقام فينبغي أن يفصل رقمي خانتي المئات والعشرات عن رقم خانة الآحاد. فمثلاً الدرجة (257) تتكون من رقم خانة المئات (2) ورقم خانة العشرات (5) ورقم خانة الآحاد (7). لذلك يفصل الرقمين (2) و (5) عن الرقم (7) وبذلك يكون العدد (25) بمثابة الغصن والرقم (7) بمثابة الورقة التي تنتمي إلى هذا الغصن.
- 3- توضع جميع الأغصان في عمود رأسي إلى اليسار حيث تكون قيمتها مرتبة ترتيباً تصاعدياً ونضع الأوراق التي تنتمي إلى كل غصن في صف أفقي بجوار هذه الأغصان إلى اليمين ويفصل بين الأغصان والأوراق بخط رأسي.

مثال

لتكن لدينا الدرجات التالية لـ 60 طالباً بالإحصاء الوصفي:

99	90	77	60	55	50	40	31	25
100	90	77	60	55	50	40	31	25
	91	80	60	55	50	40	35	26
	91	80	68	58	51	48	37	27
	98	80	69	58	51	49	39	28
	98	85	75	59	52	49	40	30
					a 6	76	60	53

المطلوب : عرض هذه الدرجات بواسطة الأغصان والأوراق.

الأغصان	الأوراق
2	55678
3	011579
4	0000899999
5	00001123555889
6	000011159
7	5677
8	0005
9	0011889
10	0

شكل 15: يوضح الأغصان والأوراق لدرجات 50 طالباً في الإحصاء.

أوراق المجموعة الثانية	الأغصان	أوراق المجموعة الأولى
	4	15
32	5	6713
87	6	820452
	7	93240
245	8	7312568
38	9	320554123
7	10	1273
8521097	11	45
35384	12	
4721	13	2

Graphing Quantitative Data Sets

Solution: Constructing a Stem-and-Leaf Plot

155 159 144 129 105 145 126 116 130 114 122 112 112 142 126 118 118 108 122 121 109 140 126 119 113 117 118 109 109 119 139 139 122 78 133 126 123 145 121 134 124 119 132 133 124 129 112 126 148 147

- The data entries go from a low of 78 to a high of 159.
- Use the rightmost digit as the leaf.
 - For instance,

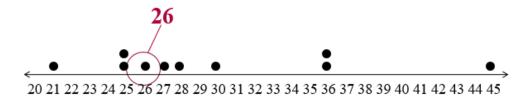
$$78 = 7 \mid 8$$
 and $159 = 15 \mid 9$

- List the stems, 7 to 15, to the left of a vertical line.
- For each data entry, list a leaf to the right of its stem.

Solution: Constructing a Stem-and-Leaf Plot

Number of Text Messages Sent			Number of Text Messages Sent			
7	8 Key: 15 5 = 155	7	8 Key: $15 \mid 5 = 155$ Include a key to identify			
8		8	the values of the data.			
9	500000 90 PG PG	9				
10	58999	10	58999			
11	6422889378992	11	2223467888999			
12	962621626314496	12	112223446666699			
13	0993423	13	0233499			
14	4520587	14	0245578			
15	59	15	59			
Unordered Stem-and-Leaf Plot		Ord	ered Stem-and-Leaf Plot			

From the display, you can conclude that more than 50% of the cellular phone users sent between 110 and 130 text messages.


Graphing Quantitative Data Sets

We did a version of this on the 1st day of school

Dot plot

 Each data entry is plotted, using a point, above a horizontal axis.

Data: 21, 25, 25, 26, 27, 28, 30, 36, 36, 45

Solution: Constructing a Dot Plot

155 159 144 129 105 145 126 116 130 114 122 112 112 142 126 118 118 108 122 121 109 140 126 119 113 117 118 109 109 119 139 139 122 78 133 126 123 145 121 134 124 119 132 133 124 129 112 126 148 147

Number of Text Messages Sent

From the dot plot, you can see that most values cluster between 105 and 148 and the value that occurs the most is 126. You can also see that 78 is an unusual data value.

This is commonly called an "outlier"

