
https://manara.edu.sy/Vector Spaces 1/322023-2024

CECC122: Linear Algebra and Matrix Theory

Lecture Notes 5: Vector Spaces: Part A

Ramez Koudsieh, Ph.D.

Faculty of Engineering

Department of Informatics

Manara University

https://manara.edu.sy/


https://manara.edu.sy/Vector Spaces 2/322023-2024

4.1 Vectors in Rn

4.2 Vector Spaces

4.3 Subspaces of Vector Spaces

4.4 Spanning Sets and Linear Independence

4.5 Basis and Dimension

4.6 Rank and Nullity of a Matrix

4.7 Coordinates and Change of Basis

4.8 Applications of Vector Spaces

https://manara.edu.sy/


https://manara.edu.sy/Vector Spaces 3/322023-2024

4.1 Vectors in Rn

◼ Vectors in the plane:

a point a vector
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( , )x x1 2
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a vector x in the plane is represented by a directed line segment with its initial point at 

the origin and its terminal point at (x1, x2).
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x1 = first component of x

x2 = second component of x

ordered pair 
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◼ Ex 1:
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◼ Ex 2:

https://manara.edu.sy/


https://manara.edu.sy/Vector Spaces 6/322023-2024

( , , , )nx x x1 2

R 1
  
= 1-space = set of all real number

R 2
  
= 2-space = set of all ordered pair of real numbers

R 3
  
= 3-space = set of all ordered triple of real numbers

( , )x x1 2

( , , )x x x1 2 3

▪ n-space: Rn

Rn  
= n-space = set of all ordered n-tuple of real numbers

▪ Notes: An n-tuple (x1, x2, …, xn) can be viewed as 

(1) a point in Rn with the xi’s as its coordinates.

n

x
x

x

 
 

=  
 
  

1

2x(2) a vector x in Rn with the xi’s as its components.

a vector x in Rn will be represented also as ( , , , )nx x x= 1 2x
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(two vectors in Rn)

u = v if and only if 

▪ Vector addition (the sum of u and v):

▪ Scalar multiplication (the scalar multiple of u by c):

The sum of two vectors and the scalar multiple of a vector in Rn are called the 

standard operations in Rn.

( , , , ), ( , , , )n nu u u v v v= =1 2 1 2u v

,  , , n nu v u v u v= = =1 1 2 2

( , , , )n nu v u v u v+ = + + +1 1 2 2u v

( , , , )nc cu cu cu= 1 2u

▪ Notes:

▪ Equal:
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◼ Difference:

◼ Zero vector:

( , , , )n nu v u v u v− = − − −1 1 2 2u v

(0, 0, , 0)=0

◼ Notes:

◼ Negative:

( , , , )nu u u− = − − −1 2u

(1) The zero vector 0 in Rn is called the additive identity in Rn.

(2) The vector  –v  is called the additive inverse of v.
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◼ Ex 3:

Let u = (−1, 0, 1) and v = (2, −1, 5) in R3. 

Perform each vector operation:

(a) u + v (b) 2u (c) v − 2u

Sol:

(a) u + v = (−1, 0, 1) + (2, −1, 5) = (1, −1, 6)

(b) 2u = 2 (−1, 0, 1) = (−2, 0, 2)

(c) v − 2u = (2, −1, 5) − (−2, 0, 2) = (4, −1, 3)
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◼ Theorem 4.1: (Properties of vector addition and scalar multiplication)

Let u, v, and w be vectors in Rn, and let c and d be scalars

(1)  u + v is a vector in Rn  Closure under addition

(2)  u + v = v + u   Commutative property of addition

(3)  (u + v) + w = u + (v + w) Associative property of addition

(4)  u + 0 = u    Additive identity property

(5)  u + (–u) = 0   Additive inverse property

(6)  cu is a vector in Rn  Closure under scalar multiplication

(7)  c(u + v) = cu + cv  Distributive property

(8)  (c + d)u = cu + du  Distributive property

(9)  c(du) = (cd)u   Associative property of multiplication

(10) 1(u) = u    Multiplicative identity property
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◼ Ex 4: (Vector operations in R 4)

Let u = (2, −1, 5, 0), v = (4, 3, 1, −1) and w = (−6, 2, 0, 3) be vectors in R4. Solve x 

for each of the following:

    (a)  x = 2u − (v + 3w)

    (b)  3(x + w) = 2u − v + x 

Sol: (a) x = 2u − (v + 3w)

   = 2u − v − 3w

   = (4, −2, 10, 0) − (4, 3, 1, −1) − (−18, 6, 0, 9)

   = (4 − 4 +18, −2 − 3 − 6, 10 − 1 − 0, 0 + 1 − 9)

   = (18, −11, 9, −8) 
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◼ Theorem 4.2: (Properties of additive identity and additive inverse)

Let v be a vector in Rn, and c be a scalars. Then the properties below are true: 

(1) The additive identity is unique. That is, if u + v = v, then u = 0

(2) The additive inverse of v is unique. That is, if v + u = 0, then u = –v

(3) 0v = 0

(4) c 0 = 0

(5) If cv = 0, then c = 0 or v = 0

(6) –(– v) = v
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◼ Linear combination:

The vector x is called  a linear combination of v1, v2, …, vn if it can be expressed in 

the form 1 2 nc c c= + + +
1 2 nx v v v c1, c2, …, cn: scalars

◼ Ex 5: Given x = (–1, –2, –2), u = (0, 1, 4), v = (–1, 1, 2), and w = (3, 1, 2) in R3, 

find a, b, and c such that x = au + bv + cw.   

Sol:

3 1

2

4 2 2 2

1,  2,  1

b c
a b c
a b c

a b c

− + = −

+ + = −

+ + = −

 = = − = −

Thus x = u − 2v − w
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4.2 Vector Spaces

◼ Vector spaces:

Let V be a set on which two operations (vector addition and scalar multiplication) are 

defined. If the following axioms are satisfied for every  u, v, and w in V and every 

scalar c and d, then V is called a vector space.

(1)  u + v is in V    Closure under addition

(2)  u + v = v + u    Commutative property

(3)  u + (v + w) = (u + v) + w  Associative property

(4) V  has a zero vector 0: for every u in V, u + 0 = u Additive identity

(5)  For every u in V, there is a vector in V denoted by –u: u + (–u) = 0

Addition:

Scalar identity
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Scalar multiplication:

(6)  cu is a vector in V  Closure under scalar multiplication

(7)  c(u + v) = cu + cv  Distributive property

(8)  (c + d)u = cu + du  Distributive property

(9)  c(du) = (cd)u   Associative property

(10) 1(u) = u    Scalar identity

◼ Notes:

(1)  A vector space (V, +, .) consists of four entities:

a nonempty set V of vectors, a set of scalars, and two operations (+, .)

(2) V = {0}  zero vector space
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◼ Examples of vector spaces:

(1) n-tuple space: V = Rn

Ex: (m = n = 2)

vector addition

scalar multiplication

( , , , ) ( , , , ) ( , , , )n n n nu u u v v v u v u v u v+ = + + +1 2 1 2 1 1 2 2

( , , , ) ( , , , )n nk u u u ku ku ku=1 2 1 2

(2) Matrix space: V = Mmxn (the set of all m×n matrices with real values)

u u v v u v u v
u u v v u v u v

+ +     
+ =     + +     

11 12 11 12 11 11 12 12

21 22 21 22 21 21 22 22

u u ku ku
k
u u ku ku

   
=   

   

11 12 11 12

21 22 21 22

vector addition

scalar multiplication
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(3) n-th degree polynomial space: V = Pn(x)

    (the set of all real polynomials of degree n or less)

( ) ( ) ( ) ( ) ( ) n
n np x q x a b a b x a b x+ = + + + + + +0 0 1 1

( ) n
nkp x ka ka x ka x= + + +0 1

(4) Function space:  ( ),V c= −  

(the set of all real functions)

( )( ) ( ) ( )f g x f x g x+ = +

( )( ) ( )kf x kf x=
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◼ Theorem 4.3: (Properties of scalar multiplication)

Let v any element of a vector space V, and let c be any scalars. Then the following 

properties are true: 

(1) 0v = 0

(2) c 0 = 0

(3) If cv = 0, then c = 0 or v = 0

(4) (–1)v = –v
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4.3 Subspaces of Vector Spaces

◼ Subspace:

: a vector space

: a nonempty subset

: a vector space (under the operations of addition and scalar 
multiplication defined in V)

⇒W is a subspace of V

(1) Zero vector space {0} is a subspace of V.

(2) V  is a subspace of V.

(V, +, .) 

W
W V

 
 

Ø

(W, +, .) 

◼ Trivial subspace: Every vector space V  has at least two subspaces
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If W is a nonempty subset of a vector space V, then W  is a subspace of V if and 

only if the following conditions hold:

(1) If  u and v  are in W, then  u + v  is in W.

(2) If u is in W and c is any scalar, then cu is in W.

◼ Theorem 4.4: (Test for a subspace)

◼ Notes:

(1) If  u and v  are in W, c and d are any scalars, then cu + dv is in W.

      ⇒ W is a subspace of V 

(2) If W is a subspace of a vector space V, then W contains the zero vector 0 of V
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◼ Ex 1: Subspace of  R2

(1) {0} 0 = (0, 0)

(2)  Lines through the origin

(3)  R2
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◼ Ex 2: (A Subset of R2 That Is Not a Subspace)

(1) {0} 0 = (0, 0, 0)

(2)  Lines through the origin

(3)  Planes through the origin

(4)  R3

◼ Ex 3: Subspace of R3

Show that the subset of R2 consisting of all points 

on x2 + y2 = 1 is not a subspace

(not closed under addition)

points (1, 0) and (0, 1) are in the subset, but their 

sum (1, 0) + (0, 1) = (1, 1) is not.

Sol:
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◼ Ex 4: (Determining subspaces of R2)

Which of the following two subsets is a subspace of R2?

     (a) The set of points on the line given by x + 2y = 0.

     (b) The set of points on the line given by x + 2y = 1.

Yes

No

◼ Theorem 4.5: (The intersection of two subspaces is a subspace)

If V and W are both subspaces of a vector space U, then the intersection of V and W 

(denoted by V ∩W) is also a subspace of U.
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4.4 Spanning Sets and Linear Independence

◼ Linear combination:

A vector v in a vector space V is called a linear combination of the vectors u1, 

u2, …, uk in V if v can be written in the form 

1 2 kc c c= + + + kv u u u
1 2

c1, c2, …, ck: scalars

◼ Ex 1: (Finding a linear combination)

(1, 2, 3), (0, 1, 2), ( 1, 0, 1)= = = −
1 2 3
v v v

Prove (a) w = (1, 1, 1) is a linear combination of v1, v2, v3

 (b) w = (1, −2, 2) is not a linear combination of v1, v2, v3
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Sol: (a) w = c1v1 + c2v2 + c3v3 

      (1, 1, 1) = c1(1, 2, 3) + c2(0, 1, 2) + c3(−1, 0, 1)

            = (c1 – c3, 2c1 + c2, 2c2 + c3)

1 3

1 2

1 2 3

1

2 1

3 2 1

c c
c c
c c c

− =

 + =

+ + =

1 0 1 1

2 1 0 1

3 2 1 1

− 
 
 
 

1 0 1 1

0 1 2 1

0 0 0 0

− 
 −
 
 

Gauss-Jordan Elimination

1 2 31 , 1 2 ,c t c t c t = + = − − = (this system has infinitely many solutions)

t = 1 ⇒ w = 2v1 − 3v2 + v3

https://manara.edu.sy/


https://manara.edu.sy/Vector Spaces 27/322023-2024

(b) w = c1v1 + c2v2 + c3v3 

1 0 1 1

2 1 0 2

3 2 1 2

− 
  −
 
 

1 0 1 1

0 1 2 4

0 0 0 7

− 
 −
 
 

Gauss-Jordan Elimination

⇒ this system has no solution (0 ≠ 7)

⇒ w ≠ c1v1 + c2v2 + c3v3 

◼ A spanning set of a vector space:

If every vector in a given vector space can be written as a linear combination of vectors 

in a given set S, then S is called a spanning set of the vector space.
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◼ Ex 2: (A spanning set for R3)

The set S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} spans R3 because any vector

u = (u1, u2, u3) in R3 can be written as

u = u1(1, 0, 0) + u2(0, 1, 0) + u3(0, 0, 1) = (u1, u2, u3)

◼ The span of a set: span (S)

If S = {v1, v2,…, vk} is a set of vectors in a vector space V, then the span of S is the 

set of all linear combinations of the vectors in S,

 1 2span( ) k iS c c c c R= + + +  
1 2 kv v v

(the set of all linear combinations of the vectors in S)
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◼ Linear Independent (L.I.) and Linear Dependent (L.D.):

S = {v1, v2,…, vk} is a set of vectors in a vector space V, 

1 2 0kc c c+ + + =kv v v
1 2

(1) If the equation has only the trivial solution (c1 = c2 = … ck = 0), then S is called 

linearly independent.

(2) If the equation has a non trivial solution (i.e. not all zeros), then S is called 

linearly dependent.
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◼ Notes

(1) Ø is linearly independent.

(2) 0 ϵ S ⇒ S is linearly dependent.

(3) v ≠ 0 ⇒ {v} is linearly independent.

(4) S1 ⊆ S2

 S1 is linearly dependent ⇒ S2 is linearly dependent

 S2 is linearly independent ⇒ S1 is linearly independent
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◼ Ex 3:  (Testing for linearly independent)

Sol:

Determine whether the following set of vectors in R3 is L.I. or L.D.

v1        v2          v3

S = {(1, 2, 3), (0, 1, 2), (−2, 0, 1)} 

1 2 3 3 0c c c+ + =
1 2
v v v

1 3

1 2

1 2 3

2 0

2 0

3 2 0

c c
c c
c c c

− =

 + =

+ + =

1 0 2 0

2 1 0 0

3 2 1 0

− 
 
 
 

1 0 0 0

0 1 0 0

0 0 1 0

 
 
 
 

Gauss-Jordan Elimination

⇒ c1 = c2 = c3 = 0 (only the trivial solution) ⇒ S is linearly independent
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Two vectors u and v in a vector space V are linearly dependent if and only if one is 

a scalar multiple of the other.

◼ Independence of two vectors:

(1) S = {v1, v2} = {(1, 2, 0), (−2, 2, 1)} is L.I. because v1 and v2 are not scalar 

multiples of each other.

◼ Ex 4:  (Testing for linear dependent of 2 Vectors)

(2) S = {v1, v2} = {(4, −4, −2), (−2, 2, 1)} is L.D. because v1 = −2v2
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