CFCCCL22: Linear Algebra and Natrix Theory

Lecture Notes 5: Vector Spaces: Part A

Ramez Koudsieh, Ph.D.
Faculty of Engineering
Department of Informatics Manara University
4.1 Vectors in R^{n}
4.2 Vector Spaces
4.3 Subspaces of Vector Spaces
4.4 Spanning Sets and Linear Independence
4.5 Basis and Dimension
4.6 Rank and Nullity of a Matrix
4.7 Coordinates and Change of Basis
4.8 Applications of Vector Spaces

4.1 Vectors in \boldsymbol{R}^{n}

- Vectors in the plane:
a vector x in the plane is represented by a directed line segment with its initial point at the origin and its terminal point at $\left(x_{1}, x_{2}\right)$.

$$
\boldsymbol{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \begin{aligned}
& x_{1}=\text { first component of } \boldsymbol{x} \\
& x_{2}=\text { second component of } \boldsymbol{x}
\end{aligned}
$$

- Ex 1:

Vector Addition $\boldsymbol{u}=\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right], \quad \boldsymbol{v}=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right], \quad \boldsymbol{u}+\boldsymbol{v}=\left[\begin{array}{l}u_{1}+v_{1} \\ u_{2}+v_{2}\end{array}\right]$
Scalar Multiplication $c \boldsymbol{v}=c\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]=\left[\begin{array}{l}c v_{1} \\ c v_{2}\end{array}\right] \quad-\boldsymbol{v}=(-1) \boldsymbol{v} \Rightarrow \boldsymbol{u}-\boldsymbol{v}=\boldsymbol{u}+(-\boldsymbol{v})$

- Ex 2:

$$
w=\left[\begin{array}{r}
-1 \\
2
\end{array}\right]
$$

- n-space: R^{n}
$R^{1}=1$-space $=$ set of all real number $\left(x_{1}, x_{2}\right)$
$R^{2}=2$-space $=$ set of all ordered pair of real numbers $\left(x_{1}, x_{2}, x_{3}\right)$
$R^{3}=3$-space $=$ set of all ordered triple of real numbers $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ \vdots
$R^{n}=n$-space $=$ set of all ordered n-tuple of real numbers
- Notes: An n-tuple $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ can be viewed as
(1) a point in R^{n} with the x_{i} 's as its coordinates.
(2) a vector x in R^{n} with the x_{i} 's as its components.

$$
\left.\boldsymbol{u}=\left(u_{1}, u_{2}, \cdots, u_{n}\right), \quad \boldsymbol{v}=\left(v_{1}, v_{2}, \cdots, v_{n}\right) \quad \text { (two vectors in } R^{n}\right)
$$

- Equal:

$$
\boldsymbol{u}=\boldsymbol{v} \text { if and only if } u_{1}=v_{1}, u_{2}=v_{2}, \cdots, u_{n}=v_{n}
$$

- Vector addition (the sum of u and v):

$$
\boldsymbol{u}+\boldsymbol{v}=\left(u_{1}+v_{1}, u_{2}+v_{2}, \cdots, u_{n}+v_{n}\right)
$$

- Scalar multiplication (the scalar multiple of u by c):

$$
c \boldsymbol{u}=\left(c u_{1}, c u_{2}, \cdots, c u_{n}\right)
$$

- Notes:

The sum of two vectors and the scalar multiple of a vector in R^{n} are called the standard operations in R^{n}.

- Negative:

$$
-\boldsymbol{u}=\left(-u_{1},-u_{2}, \cdots,-u_{n}\right)
$$

- Difference:

$$
\boldsymbol{u}-\boldsymbol{v}=\left(u_{1}-v_{1}, u_{2}-v_{2}, \cdots, u_{n}-v_{n}\right)
$$

- Zero vector:

$$
\mathbf{0}=(0,0, \cdots, 0)
$$

- Notes:
(1) The zero vector $\mathbf{0}$ in R^{n} is called the additive identity in R^{n}.
(2) The vector $-\boldsymbol{v}$ is called the additive inverse of \boldsymbol{v}.
- Ex 3:

Let $\boldsymbol{u}=(-1,0,1)$ and $\boldsymbol{v}=(2,-1,5)$ in R^{3}.
Perform each vector operation:
(a) $\boldsymbol{u}+\boldsymbol{v}$
(b) $2 \boldsymbol{u}(c) \boldsymbol{v}-2 \boldsymbol{u}$

Sol:
(a) $\boldsymbol{u}+\boldsymbol{v}=(-1,0,1)+(2,-1,5)=(1,-1,6)$
(b) $2 \boldsymbol{u}=2(-1,0,1)=(-2,0,2)$
(c) $\boldsymbol{v}-2 \boldsymbol{u}=(2,-1,5)-(-2,0,2)=(4,-1,3)$

- Theorem 4.1: (Properties of vector addition and scalar multiplication)

Let $\boldsymbol{u}, \boldsymbol{v}$, and \boldsymbol{w} be vectors in R^{n}, and let c and d be scalars
(1) $\boldsymbol{u}+\boldsymbol{v}$ is a vector in R^{n}
(2) $\boldsymbol{u}+\boldsymbol{v}=\boldsymbol{v}+\boldsymbol{u}$
(3) $(u+v)+w=u+(v+w)$
(4) $\boldsymbol{u}+\mathbf{0}=\boldsymbol{u}$
(5) $\boldsymbol{u}+(-\boldsymbol{u})=\mathbf{0}$
(6) $c \boldsymbol{u}$ is a vector in R^{n}
(7) $c(\boldsymbol{u}+\boldsymbol{v})=c \boldsymbol{u}+c \boldsymbol{v}$
(8) $(c+d) \boldsymbol{u}=c \boldsymbol{u}+d \boldsymbol{u}$
(9) $c(d \boldsymbol{u})=(c d) \boldsymbol{u}$
(10) $1(u)=u$

Closure under addition
Commutative property of addition
Associative property of addition
Additive identity property
Additive inverse property
Closure under scalar multiplication
Distributive property
Distributive property
Associative property of multiplication
Multiplicative identity property

- Ex 4: (Vector operations in R^{4})

Let $\boldsymbol{u}=(2,-1,5,0), \boldsymbol{v}=(4,3,1,-1)$ and $\boldsymbol{w}=(-6,2,0,3)$ be vectors in R^{4}. Solve \boldsymbol{x} for each of the following:
(a) $\boldsymbol{x}=2 \boldsymbol{u}-(v+3 w)$
(b) $3(x+w)=2 u-v+x$

Sol: (a) $\boldsymbol{x}=2 \boldsymbol{u}-(\boldsymbol{v}+3 \boldsymbol{w})$

$$
\begin{aligned}
& =2 \boldsymbol{u}-\boldsymbol{v}-3 \boldsymbol{w} \\
& =(4,-2,10,0)-(4,3,1,-1)-(-18,6,0,9) \\
& =(4-4+18,-2-3-6,10-1-0,0+1-9) \\
& =(18,-11,9,-8)
\end{aligned}
$$

(b) $3(\boldsymbol{x}+\boldsymbol{w})=2 \boldsymbol{u}-\boldsymbol{v}+\boldsymbol{x}$

$$
\begin{aligned}
3 x+3 w & =2 u-v+x \\
3 x-x & =2 u-v-3 w \\
2 x & =2 u-v-3 w
\end{aligned}
$$

$$
\boldsymbol{x}=\boldsymbol{u}-\frac{1}{2} \boldsymbol{v}-\frac{3}{2} \boldsymbol{w}
$$

$$
=(2,1,5,0)+\left(-2, \frac{-3}{2}, \frac{-1}{2}, \frac{1}{2}\right)+\left(9,-3,0, \frac{-9}{2}\right)
$$

$$
=\left(9, \frac{-11}{2}, \frac{9}{2},-4\right)
$$

- Theorem 4.2: (Properties of additive identity and additive inverse)

Let \boldsymbol{v} be a vector in R^{n}, and c be a scalars. Then the properties below are true:
(1) The additive identity is unique. That is, if $\boldsymbol{u}+\boldsymbol{v}=\boldsymbol{v}$, then $\boldsymbol{u}=\mathbf{0}$
(2) The additive inverse of \boldsymbol{v} is unique. That is, if $\boldsymbol{v}+\boldsymbol{u}=\mathbf{0}$, then $\boldsymbol{u}=-\boldsymbol{v}$
(3) $0 v=\mathbf{0}$
(4) $c \mathbf{0}=\mathbf{0}$
(5) If $c \boldsymbol{v}=\mathbf{0}$, then $c=0$ or $\boldsymbol{v}=\mathbf{0}$
(6) $-(-\boldsymbol{v})=\boldsymbol{v}$

- Linear combination:

The vector \boldsymbol{x} is called a linear combination of $\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{\boldsymbol{n}}$ if it can be expressed in the form $\boldsymbol{x}=c_{1} \boldsymbol{v}_{\mathbf{1}}+c_{2} \boldsymbol{v}_{\mathbf{2}}+\cdots+c_{n} \boldsymbol{v}_{n} \quad c_{1}, c_{2}, \ldots, c_{n}$: scalars

- Ex 5: Given $\boldsymbol{x}=(-1,-2,-2), \boldsymbol{u}=(0,1,4), \boldsymbol{v}=(-1,1,2)$, and $\boldsymbol{w}=(3,1,2)$ in R^{3}, find a, b, and c such that $\boldsymbol{x}=a \boldsymbol{u}+b \boldsymbol{v}+c \boldsymbol{w}$.
Sol:

$$
\begin{array}{r}
-b+3 c=-1 \\
a+b+c=-2 \\
4 a+2 b+2 c=-2 \\
\Rightarrow a=1, \quad b=-2, c=-1
\end{array}
$$

Thus $\boldsymbol{x}=\boldsymbol{u}-2 \boldsymbol{v}-\boldsymbol{w}$

4.2 Vector Spaces

- Vector spaces:

Let V be a set on which two operations (vector addition and scalar multiplication) are defined. If the following axioms are satisfied for every $\boldsymbol{u}, \boldsymbol{v}$, and \boldsymbol{w} in V and every scalar c and d, then V is called a vector space.

Addition:

(1) $\boldsymbol{u}+\boldsymbol{v}$ is in V
(2) $\boldsymbol{u}+\boldsymbol{v}=\boldsymbol{v}+\boldsymbol{u}$
(3) $u+(v+w)=(u+v)+w$

Closure under addition

Commutative property
Associative property
(4) V has a zero vector $\mathbf{0}$: for every \boldsymbol{u} in $V, \boldsymbol{u}+\mathbf{0}=\boldsymbol{u}$ Additive identity
(5) For every \boldsymbol{u} in V, there is a vector in V denoted by $-\boldsymbol{u}: \boldsymbol{u}+(-\boldsymbol{u})=\mathbf{0} \quad$ Scalar identity

Scalar multiplication:
(6) $c \boldsymbol{u}$ is a vector in V
(7) $c(\boldsymbol{u}+\boldsymbol{v})=c \boldsymbol{u}+c \boldsymbol{v}$
(8) $(c+d) \boldsymbol{u}=c \boldsymbol{u}+d \boldsymbol{u}$
(9) $c(d \boldsymbol{u})=(c d) \boldsymbol{u}$
(10) $1(u)=u$

جَــامعة
الـمَـنـنارة

Closure under scalar multiplication
Distributive property
Distributive property
Associative property
Scalar identity

- Notes:
(1) A vector space $(V,+,$.$) consists of four entities:$
a nonempty set V of vectors, a set of scalars, and two operations $(+,$.
(2) $V=\{0\}$ zero vector space
- Examples of vector spaces:
(1) n-tuple space: $V=R^{n}$

$$
\begin{aligned}
& \left(u_{1}, u_{2}, \cdots, u_{n}\right)+\left(v_{1}, v_{2}, \cdots, v_{n}\right)=\left(u_{1}+v_{1}, u_{2}+v_{2}, \cdots, u_{n}+v_{n}\right) \quad \text { vector addition } \\
& k\left(u_{1}, u_{2}, \cdots, u_{n}\right)=\left(k u_{1}, k u_{2}, \cdots, k u_{n}\right) \quad \text { scalar multiplication }
\end{aligned}
$$

(2) Matrix space: $V=M_{m \times n}$ (the set of all $m \times n$ matrices with real values)

$$
\operatorname{Ex}:(m=n=2)
$$

$$
\begin{gathered}
{\left[\begin{array}{ll}
u_{11} & u_{12} \\
u_{21} & u_{22}
\end{array}\right]+\left[\begin{array}{ll}
v_{11} & v_{12} \\
v_{21} & v_{22}
\end{array}\right]=\left[\begin{array}{ll}
u_{11}+v_{11} & u_{12}+v_{12} \\
u_{21}+v_{21} & u_{22}+v_{22}
\end{array}\right] \text { vector addition }} \\
k\left[\begin{array}{ll}
u_{11} & u_{12} \\
u_{21} & u_{22}
\end{array}\right]=\left[\begin{array}{ll}
k u_{11} & k u_{12} \\
k u_{21} & k u_{22}
\end{array}\right] \text { scalar multiplication }
\end{gathered}
$$

(3) n-th degree polynomial space: $V=\overline{P_{n}(x)}$
(the set of all real polynomials of degree n or less)

$$
\begin{aligned}
& p(x)+q(x)=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\cdots+\left(a_{n}+b_{n}\right) x^{n} \\
& k p(x)=k a_{0}+k a_{1} x+\cdots+k a_{n} x^{n}
\end{aligned}
$$

(4) Function space: $V=c(-\infty, \infty)$
(the set of all real functions)

$$
\begin{aligned}
& (f+g)(x)=f(x)+g(x) \\
& (k f)(x)=k f(x)
\end{aligned}
$$

- Theorem 4.3: (Properties of scalar multiplication)

Let \boldsymbol{v} any element of a vector space V, and let c be any scalars. Then the following properties are true:
(1) $0 \boldsymbol{v}=\mathbf{0}$
(2) $c \mathbf{0}=\mathbf{0}$
(3) If $c \boldsymbol{v}=\mathbf{0}$, then $c=0$ or $\boldsymbol{v}=\mathbf{0}$
(4) $(-1) \boldsymbol{v}=-\boldsymbol{v}$
4.3 Subspaces of Vector Spaces

- Subspace:
$(V,+,) \quad:$. a vector space
$\left.\begin{array}{l}W \neq \emptyset \\ W \subseteq V\end{array}\right\} \quad$: a nonempty subset
$(W,+,) \quad:. ~ a ~ v e c t o r ~ s p a c e ~(u n d e r ~ t h e ~ o p e r a t i o n s ~ o f ~ a d d i t i o n ~ a n d ~ s c a l a r ~$ multiplication defined in V)
$\Rightarrow W$ is a subspace of V
- Trivial subspace: Every vector space V has at least two subspaces
(1) Zero vector space $\{\boldsymbol{0}\}$ is a subspace of V.
(2) V is a subspace of V.
- Theorem 4.4: (Test for a subspace)

If W is a nonempty subset of a vector space V, then W is a subspace of V if and only if the following conditions hold:
(1) If \boldsymbol{u} and \boldsymbol{v} are in W, then $\boldsymbol{u}+\boldsymbol{v}$ is in W.
(2) If \boldsymbol{u} is in W and c is any scalar, then $c \boldsymbol{u}$ is in W.

- Notes:
(1) If \boldsymbol{u} and \boldsymbol{v} are in W, c and d are any scalars, then $c \boldsymbol{u}+d \boldsymbol{v}$ is in W.
$\Rightarrow W$ is a subspace of V
(2) If W is a subspace of a vector space V, then W contains the zero vector $\mathbf{0}$ of V
- Ex 1: Subspace of R^{2}

$$
W=\{(0,0)\}
$$

$W=$ all points on a line passing through the origin

$W=R^{2}$
(1) $\{0\} \quad \mathbf{0}=(0,0)$
(2) Lines through the origin
(3) R^{2}

- Ex 2: (A Subset of R^{2} That Is Not a Subspace) Show that the subset of R^{2} consisting of all points on $x^{2}+y^{2}=1$ is not a subspace
Sol:
points $(1,0)$ and $(0,1)$ are in the subset, but their $\operatorname{sum}(1,0)+(0,1)=(1,1)$ is not. (not closed under addition)

- Ex 3: Subspace of R^{3}
(1) $\{0\}$
$\mathbf{0}=(0,0,0)$
(2) Lines through the origin
(3) Planes through the origin
(4) R^{3}
- Ex 4: (Determining subspaces of R^{2})

Which of the following two subsets is a subspace of R^{2} ?
(a) The set of points on the line given by $x+2 y=0$. Yes
(b) The set of points on the line given by $x+2 y=1$. No

- Theorem 4.5: (The intersection of two subspaces is a subspace)

If V and W are both subspaces of a vector space U, then the intersection of V and W (denoted by $V \cap W$) is also a subspace of U.

4.4 Spanning Sets and Linear Independence

- Linear combination:

A vector \boldsymbol{v} in a vector space V is called a linear combination of the vectors $\boldsymbol{u}_{\boldsymbol{1}}$, u_{2}, \ldots, u_{k} in V if v can be written in the form

$$
\boldsymbol{v}=c_{1} \boldsymbol{u}_{\mathbf{1}}+c_{2} \boldsymbol{u}_{\mathbf{2}}+\cdots+c_{k} \boldsymbol{u}_{\boldsymbol{k}} \quad c_{1}, c_{2}, \ldots, c_{k}: \text { scalars }
$$

- Ex 1: (Finding a linear combination)

$$
v_{1}=(1,2,3), \quad v_{2}=(0,1,2), \quad v_{3}=(-1,0,1)
$$

Prove (a) $\boldsymbol{w}=(1,1,1)$ is a linear combination of $\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}, \boldsymbol{v}_{\mathbf{3}}$
(b) $\boldsymbol{w}=(1,-2,2)$ is not a linear combination of $\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}, \boldsymbol{v}_{\mathbf{3}}$

Sol: (a) $\boldsymbol{w}=c_{1} \boldsymbol{v}_{\mathbf{1}}+c_{2} \boldsymbol{v}_{\mathbf{2}}+c_{3} \boldsymbol{v}_{\mathbf{3}}$

$$
\begin{aligned}
(1,1,1) & =c_{1}(1,2,3)+c_{2}(0,1,2)+c_{3}(-1,0,1) \\
= & \left(c_{1}-c_{3}, 2 c_{1}+c_{2}, 2 c_{2}+c_{3}\right) \\
& -c_{3}=1 \\
c_{1} & =1 \\
2 c_{1}+c_{2} & =1
\end{aligned}
$$

$$
\Rightarrow\left[\begin{array}{ccc|c}
1 & 0 & -1 & 1 \\
2 & 1 & 0 & 1 \\
3 & 2 & 1 & 1
\end{array}\right] \xrightarrow{\text { Gauss-Jordan Elimination }}\left[\begin{array}{ccc|c}
1 & 0 & -1 & 1 \\
0 & 1 & 2 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

$$
\Rightarrow c_{1}=1+t, c_{2}=-1-2 t, c_{3}=t \quad \text { (this system has infinitely many solutions) }
$$

$$
t=1 \Rightarrow \boldsymbol{w}=2 \boldsymbol{v}_{\mathbf{1}}-3 \boldsymbol{v}_{\mathbf{2}}+\boldsymbol{v}_{\mathbf{3}}
$$

(b) $\boldsymbol{w}=c_{1} \boldsymbol{v}_{\mathbf{1}}+c_{2} \boldsymbol{v}_{\mathbf{2}}+c_{3} \boldsymbol{v}_{\mathbf{3}}$

$$
\begin{aligned}
& \Rightarrow\left[\begin{array}{ccc|c}
1 & 0 & -1 & 1 \\
2 & 1 & 0 & -2 \\
3 & 2 & 1 & 2
\end{array}\right] \xrightarrow{\text { Gauss-Jordan Elimination }}\left[\begin{array}{ccc|c}
1 & 0 & -1 & 1 \\
0 & 1 & 2 & -4 \\
0 & 0 & 0 & 7
\end{array}\right] \\
& \Rightarrow \text { this system has no solution }(0 \neq 7) \\
& \Rightarrow \boldsymbol{w} \neq c_{1} \boldsymbol{v}_{\mathbf{1}}+c_{2} \boldsymbol{v}_{\mathbf{2}}+c_{3} \boldsymbol{v}_{\mathbf{3}}
\end{aligned}
$$

- A spanning set of a vector space:

If every vector in a given vector space can be written as a linear combination of vectors in a given set S, then S is called a spanning set of the vector space.

- Ex 2: (A spanning set for R^{3})

The set $S=\{(1,0,0),(0,1,0),(0,0,1)\}$ spans R^{3} because any vector $\boldsymbol{u}=\left(u_{1}, u_{2}, u_{3}\right)$ in R^{3} can be written as

$$
\boldsymbol{u}=u_{1}(1,0,0)+u_{2}(0,1,0)+u_{3}(0,0,1)=\left(u_{1}, u_{2}, u_{3}\right)
$$

- The span of a set: span (S)

If $S=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{\boldsymbol{k}}\right\}$ is a set of vectors in a vector space V, then the span of S is the set of all linear combinations of the vectors in S,

$$
\operatorname{span}(S)=\left\{c_{1} \boldsymbol{v}_{\mathbf{1}}+c_{2} \boldsymbol{v}_{\mathbf{2}}+\cdots+c_{k} \boldsymbol{v}_{\boldsymbol{k}} \mid \forall c_{i} \in R\right\}
$$

(the set of all linear combinations of the vectors in S)

- Linear Independent (L.I.) and Linear Dependent (L.D.):
$S=\left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}, \ldots, \boldsymbol{v}_{k}\right\}$ is a set of vectors in a vector space V,
$c_{1} \boldsymbol{v}_{\mathbf{1}}+c_{2} \boldsymbol{v}_{\mathbf{2}}+\cdots+c_{k} \boldsymbol{v}_{k}=0$
(1) If the equation has only the trivial solution $\left(c_{1}=c_{2}=\ldots c_{k}=0\right)$, then S is called linearly independent.
(2) If the equation has a non trivial solution (i.e. not all zeros), then S is called linearly dependent.
- Notes
(1) \varnothing is linearly independent.
(2) $\mathbf{0} \in S \Rightarrow S$ is linearly dependent.
(3) $\boldsymbol{v} \neq \mathbf{0} \Rightarrow\{\boldsymbol{v}\}$ is linearly independent.
(4) $S_{1} \subseteq S_{2}$
S_{1} is linearly dependent $\Rightarrow S_{2}$ is linearly dependent
S_{2} is linearly independent $\Rightarrow S_{1}$ is linearly independent
- Ex 3: (Testing for linearly independent)

Determine whether the following set of vectors in R^{3} is L.I. or L.D.

$$
S=\{(1,2,3),(0,1,2),(-2,0,1)\}
$$

Sol:

$$
\begin{aligned}
& c_{1} \quad-2 c_{3}=0 \\
& c_{1} \boldsymbol{v}_{\mathbf{1}}+c_{2} \boldsymbol{v}_{\mathbf{2}}+c_{3} \boldsymbol{v}_{3}=0 \Rightarrow 2 c_{1}+c_{2} \quad=0 \\
& 3 c_{1}+2 c_{2}+c_{3}=0 \\
& \Rightarrow\left[\begin{array}{ccc|c}
1 & 0 & -2 & 0 \\
2 & 1 & 0 & 0 \\
3 & 2 & 1 & 0
\end{array}\right] \xrightarrow{\text { Gauss-Jordan Elimination }}\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \\
& \Rightarrow c_{1}=c_{2}=c_{3}=0 \text { (only the trivial solution) } \quad \Rightarrow S \text { is linearly independent }
\end{aligned}
$$

- Independence of two vectors:

Two vectors u and v in a vector space V are linearly dependent if and only if one is a scalar multiple of the other.

- Ex 4: (Testing for linear dependent of 2 Vectors)
(1) $S=\left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}\right\}=\{(1,2,0),(-2,2,1)\}$ is L.I. because $\boldsymbol{v}_{\mathbf{1}}$ and $\boldsymbol{v}_{\mathbf{2}}$ are not scalar multiples of each other.
(2) $S=\left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}\right\}=\{(4,-4,-2),(-2,2,1)\}$ is L.D. because $\boldsymbol{v}_{\mathbf{1}}=-2 \boldsymbol{v}_{\mathbf{2}}$

