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4.5 Basis and Dimension
« Basis:
V: a vector space S={v, vy, ..., v}V

(a) Sspans V (i.e., span(S)= V)

Linearl
(b) S'is linearly independent Incarty

Independent
Sets

Generating
Sets

= S'is called a basis for V
= Notes:
(1) 9 1s a basis for {0}
(2) the standard basis for R>:
{t, 7,0k} 1=(1,0,0), 7=(0,1,0), £k=(0,0,1)
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(3) the standard basis for R":
{e, e, ...,e}t e=(10,..0),e=(01,...,0), e =(00,...,1)

Ex: R* {(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)}

« Finite dimensional:

A vector space V 1s called finite dimensional, 1f 1t has a basis consisting of a finite
number of elements.

« Dimension:

The dimension of a finite dimensional vector space V' 1s defined to be the number of

vectors 1n a basis for V.

V: a vector space, S: a basis for V' = dim(V) = #(S) (the number of vectors in S)
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= Notes: .
dim(V)=n
(1) dim({0}) = 0 = #)
, Linearly
2)dim(V)=n, Sc V Gensertatmg Independent
ets
S:a L.l set = #(S)<n g
S: a generating set = #(5) = n #S>n #S)=n #HS)<n
S: a basis = #(S=n

Vector Spaces https://manara.edu.sy/ 2023-2024 5/25


https://manara.edu.sy/

6)liaJl

4.6 Rank and Nullity of a Matrix
= Rank of a Matrix:

The rank of an mxn matrix A, denoted by rank(A), is the maximum number of linearly
independent row vectors in A or the maximum number of linearly independent column
vectors in A

= Nullity of a Matrix:

The nullity of an mxn matrix A, denoted by nullity(A), is the dimension of the solution
space of the linear system Ax=0

» Theorem 4.6:
If A is any matrix, then rank(A) = rank(A”)
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= Notes:

(1) The maximum number of linearly independent vectors in a matrix is equal to the

number of non-zero rows 1n its row echelon matrix

(2) The number of leading 1’s in the reduced row-echelon form of A is equal to the
rank of A

(3) The number of free variables in the reduced row-echelon form of A is equal to
the nullity of A

= Theorem 4.7: (Consistency of Ax = b)
If rank([ A|b]) = rank(A), then the system Ax = b 1s consistent.
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= Note:
A linear system of equations Ax = b is consistent iff the rank of A is the same as the
rank of the augmented matrix of the system [ A|b]

= Notes:

(1) If rank(A) = rank(A|b) = n, then the system Ax = b has a unique sol.
(2) If rank(A) = rank(A|b) < n, then the system Ax = b has co-many sols.
(3) If rank(A) < rank(A|b), then the system Ax = b is inconsistent.
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« Ex 1. (Rank by Row Reduction)

A=

1
2
3

1 -1 3
2 6 8
5 -7 8

Gauss Elimination>

>y

ojligJi

rank(A) = 2 (2 non-zero rows = 2 non-zero rows)

nullity(A) = 2 (2 free variables)

« Ex 2: (Finding the solution set of a nonhomogeneous system)

T, + T, — X
3z, + 2z, — uwz,

Sol:

—1
3
1

SO =
O = =
|

|
ek

SN

Ol—= W
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11 -1 10 1
a-l10 1 Gauss-Jordan Ehmmatlon> 01
32 —1] 00 0
(A b= } é _}_31 Gauss-Jordan Elimination> é (I _21 _Z
32 -1: 1 00 0:0
T, + z, = 3 T, = 3 - x,
T, — 2z, =4 = 1z, =-4+ 2z,
letting z; = ¢, then the solutions are: {(3 — 1, —4 + 21, )|t € R}
So the system has infinitely many solutions (consistent)
« Check: rank(A) =rank([A:b]) =2
2023-2024 10/25
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= Theorem 4.8 (Dimension Theorem for Matrices)

If A is a matrix with n columns, then rank(A) + nullity(A4) = n

= Ex 3: (Rank and nullity of a matrix)

1 0 -2 1 0 1 0 -2 0 1

0 -1 -3 1 3 G.J. Elimination |01 30 -4
A=l 1 121 3 > B=lg0 01 -1
0 3 9 0 -12 00 00 0

rank(A) =3 (the number of nonzero rows in B)

nullity(A) = n —rank(A)=5-3=2
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= Summary of equivalent conditions for square matrices:

If A is an nxn matrix, then the following conditions are equivalent:

(1) A isinvertible

(2) Ax= b has a unique solution for any nx1 matrix b.
(3) Ax =0 has only the trivial solution

(4) A 1srow-equivalentto I

(5) [A[#0

(6) rank(A4)=n

(7) The n row vectors of A are linearly independent.

(8) The n column vectors of A are linearly independent.
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4.7 Coordinates and Change of Basis
= Coordinate representation relative to a basis

Let B= {v;, v,, ..., v,} be an ordered basis for a vector space V and let x be a vector

in Vsuch that © = cv, +¢c,v, +---+¢,v,

The scalars ¢, c,, ..., ¢, are called the coordinates of x relative to the basis 5. The
coordinate matrix (or coordinate vector) of x relative to B is the column matrix in R"
whose components are the coordinates of .

[w]B - sz
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= Ex 1: (Coordinates and components in R")

Find the coordinate matrix of = (-2, 1, 3) in R’ relative to the standard basis S = {(1,

0,0),(0,1,0),(0,0, 1)}

Sol:
r=(-2,1,3)=-2(1,0,0)+1(0, 1, 0) + 3(0, 0, 1)
i
], =] 1
_ 3_
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« Ex 2: (Finding a coordinate matrix relative to a nonstandard basis)
Find the coordinate matrix of = (1, 2, —1) in R’ relative to the (nonstandard) basis

B'= {’U;l, Uu,, 'U,3} — {(19 Oa 1)9 ( 09 _19 2)9 (29 39 _5)}

[y
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T = cu, +cu, +cu, = (1,2,-1) = ¢/(1,0,1) + ¢, (0, = L,2) + ¢;,(2,3, = 5)

Sol:
¢, + 2¢,
= —c, + 3¢,
¢, + 2¢, — 5c
1 0 2 1]
= |0 -1 3
12 -5 -1

= -1

1
2

1.€.

1

G. J. Elimination

>

0
-1

= |x]; =
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= Change of Basis In R"

Change of basis: Given the coordinates of a vector relative to a basis B, find the
coordinates relative to another basis B’.

In Ex 2, let B be the standard basis. Finding the coordinate matrix of = (1, 2, —1)

relative to the basis B ' becomes solving for ¢,, ¢,, and ¢; in the matrix equation

1 0 2|¢ 1
0 -1 3l|lc,|=| 2
_1 2 —5_ o _—1_

P [zlp [

P 1s the transition matrix from B’ to B,
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Plz]z. =[x]z Change of basis from B’ to B

[x]5. = P [z]5 Change of basis from B to B’

1 4 2]/1 5
3 -7 3|2 |=]-8
1 =2 -1]|-1 i)

P zlp  [zlp

(@] = P [z] 5

o R

Coordinate Transition
matrix of x matrix from
relative to B’ Bto B’

Coordinate
matrix of x

relative to B
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= Theorem 4.25: (The inverse of a transition matrix)
If P is the transition matrix from a basis B' to a basis B in R", then
(1) P 1isinvertible

(2) The transition matrix from Bto B'1s P

=« Notes:

B={u,, uy, ..., u }, B ={u,u,,..u}
[U]B - [[u;]B’ [u;]B’ *** [u:%]B] [U]B' =P [U]B’
[0], = [[w ]y (U ]p, oo [0, 15 ] ], =P [v],
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= Theorem 4.26: (Transition matrix from BtoB')
Let B={v,v,, ..., v, } and B'= {u,, u,, ..., u_} be two bases for R". Then the
transition matrix P~ from B to B' can be found by using Gauss-Jordan elimination on

the nx2n matrix [B': B] as follows: [B'"B] — [P -1

» Ex 3: (Finding a transition matrix)

B =1{(-3,2), (4-2)} and B' = {(-1, 2), (2,-2)} are two bases for R*
(a) Find the transition matrix from B'to B.

(b) Let [v], = [;}, find [v]

(¢) Find the transition matrix from B to B'.
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3 4 -1 21 G.J.Elimination 10:3 =2
SOl: (a,) 2 _2 2 _2 > .
B B' 7 p

3 -2
= P = 5 _1} (the transition matrix from B' to B)

B vl =M = [v], = P[v], =B :ﬂm =[ﬂ

= Check:
[U]B’ — |:21:| — V= (1)( o 192) + (2)(29 o 2) — (39 o 2)

(0], = [‘(ﬂ = v=(-13,-2)+(0)4,-2) = (3,-2)
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(0 | |
-1 2:-3 4 G. J. Elimination 1 0:-1 2
i) ) ) > 10 1:=2 3
B' B I P!
— P! = {:; ﬂ (the transition matrix from B to B ')
= Check:
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= Ex 4: (Finding a transition matrix)

Find the transition matrix from B to B' for The bases for R’ below.
B=1{1,0,0),(0,1,0),(0,0, 1)} and B'= {(1, 0, 1), (0,1, 2), (2, 3,-5)}

10 0] 1 0 2
Sol: B=|0 10|, B=|0-1 3
001 1 2 -5
1 0 2:10 0] . A (10 0:=1 4 2]
0 -1 30 1 o| SfEhmmation 4 g:5 g
1 2 =50 0 1 00 1i 1 -2 -1
B B I p-!
1 4 2][1] [5°
3 -7 31| 2 |=|-8 (Ex 2)
1 -2 -1|-1] -2
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4.8 Applications of Vector Spaces

Conic Sections And Rotation

ar’ + bxy + cy¥ + dz + ey + f=0 General equation of a conic section

performing a rotation of axes that eliminates the xy-term

() + (Y)Y +ded +ey+f' =0

= Rotation of Axes:

The general equation azx” + bzy + cy* + dz + ey + f= 0 can be written in the form
d(2) + (y)* + d2 + €y + f' = 0 by rotating the coordinate axes counterclockwise
through the angle 6, where 6 is found using the equation cot 20 = (a — c¢)/b. The
coefficients of the new equation are obtained from the substitutions = 2’ cos 6 — ¢/ sin

6 and y= 2/ sin 6 + 1/ cos 0.
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= Ex 1: (Rotation of a Conic Section)

Perform a rotation of axes to eliminate the xy-term in

527 — 62y + 5y + 14427 — 242y + 18 = 0

Sol:
cot26?:a_c:E:O:6’:£:>si116?=cosé?:L
b —6 4 J2
1
T =x'cosf —y'sind = —(2'-9y")
J2
1
y =x'sinf +y'cosld = —(z'+9")
J2

= (') +4(y') +62' =8y +9 =0
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= Ex 2: (Rotation of a Conic Section)

’ 2 r 2
@+ W=D,
4 1

(=3v/2, —2+/2)

#
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