CBCCL22: Linear Algebra and Natrix Theory

Lecture Notes 7: Inner Product Spaces: Part A

Ramez Koudsieh, Ph.D.
Faculty of Engineering
Department of Informatics Manara University
5.1 Length and Dot Product in R^{n}
5.2 Inner Product Spaces
5.3 Orthonormal Bases: Gram-Schmidt Process
5.4 Mathematical Models and Least Square Analysis

5.1 Length and Dot Product in \boldsymbol{R}^{n}

- Length:

The length of a vector $\boldsymbol{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ in R^{n} is given by

$$
\|\boldsymbol{v}\|=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}
$$

- Note: The length of a vector is also called its norm.
- Notes: Properties of length

$$
\begin{aligned}
& \text { (1) }\|\boldsymbol{v}\| \geq 0 \\
& \text { (2) }\|\boldsymbol{v}\|=1 \Rightarrow \boldsymbol{v} \quad \text { is called a unit vector } \\
& \text { (3) }\|\boldsymbol{v}\|=0 \text { iff } \boldsymbol{v}=0
\end{aligned}
$$

- Ex 1:
(a) In R^{5}, the length of $\boldsymbol{v}=(0,-2,1,4,-2)$ is given by

$$
\|\boldsymbol{v}\|=\sqrt{0^{2}+(-2)^{2}+1^{2}+4^{2}+(-2)^{2}}=\sqrt{25}=5
$$

(b) In R^{3} the length of $\quad v=\left(\frac{2}{\sqrt{17}}, \frac{-2}{\sqrt{17}}, \frac{3}{\sqrt{17}}\right)$ given by

$$
\|v\|=\sqrt{\left(\frac{2}{\sqrt{17}}\right)^{2}+\left(\frac{-2}{\sqrt{17}}\right)^{2}+\left(\frac{3}{\sqrt{17}}\right)^{2}}=\sqrt{\frac{17}{17}}=1 \quad(v \text { is a unit vector })
$$

- A standard unit vector in R^{n} :

$$
\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}=\{(1,0, \ldots, 0),(0,1, \ldots, 0), \ldots,(0,0, \ldots, 1)\}
$$

- Ex 2:
the standard unit vector in $R^{2}:\{i, j\}=\{(1,0),(0,1)\}$
the standard unit vector in $R^{3}:\{i, j, k\}=\{(1,0,0),(0,1,0),(0,0,1)\}$
- Notes: (Two nonzero vectors are parallel)
$u=c v$
(1) $c>0 \Rightarrow u$ and v have the same direction
(2) $c<0 \Rightarrow \boldsymbol{u}$ and \boldsymbol{v} have the opposite direction
- Theorem 5.1: (Length of a scalar multiple)

Let \boldsymbol{v} be a vector in R^{n} and c be a scalar, then $\|c \boldsymbol{v}\|=|c|\|\boldsymbol{v}\|$

- Theorem 5.2: (Unit vector in the direction of v)

If \boldsymbol{v} is a nonzero vector in R^{n}, then the vector $\boldsymbol{u}=\frac{\boldsymbol{v}}{\|\boldsymbol{v}\|}$ has length 1 and has the same direction as \boldsymbol{v}.

This vector \boldsymbol{u} is called the unit vector in the direction of v.

- Note:

The process of finding the unit vector in the direction of v is called normalizing the vector \boldsymbol{v}.

- Ex 3: (Finding a unit vector)

Find the unit vector in the direction of $\boldsymbol{v}=(3,-1,2)$, and verify that this vector has length 1.

- Sol:

$$
\begin{aligned}
& \|\boldsymbol{v}\|=\sqrt{3^{2}+(-1)^{2}+2^{2}}=\sqrt{14} \\
& \Rightarrow \frac{\boldsymbol{v}}{\|\boldsymbol{v}\|}=\frac{(3,-1,2)}{\sqrt{3^{2}+(-1)^{2}+2^{2}}}=\frac{1}{\sqrt{14}}(3,-1,2)=\left(\frac{3}{\sqrt{14}}, \frac{-1}{\sqrt{14}}, \frac{2}{\sqrt{14}}\right) \\
& \sqrt{\left(\frac{3}{\sqrt{14}}\right)^{2}+\left(\frac{-1}{\sqrt{14}}\right)^{2}+\left(\frac{2}{\sqrt{14}}\right)^{2}}=\sqrt{\frac{14}{14}}=1 \Rightarrow \frac{v}{\|\boldsymbol{v}\|} \text { is a unit vector }
\end{aligned}
$$

- Distance between two vectors:

The distance between two vectors \boldsymbol{u} and \boldsymbol{v} in R^{n} is: $d(\boldsymbol{u}, \boldsymbol{v})=\|\boldsymbol{u}-\boldsymbol{v}\|$

- Notes: (Properties of distance)
(1) $d(\boldsymbol{u}, \boldsymbol{v}) \geq 0$
(2) $d(\boldsymbol{u}, \boldsymbol{v})=0$ if and only if $\boldsymbol{u}=\boldsymbol{v}$
(3) $d(\boldsymbol{u}, \boldsymbol{v})=d(\boldsymbol{v}, \boldsymbol{u})$
- Ex 4: (Distance between 2 vectors)

The distance between $\boldsymbol{u}=(0,2,2)$ and $\boldsymbol{v}=(2,0,1)$ is

$$
d(\boldsymbol{u}, \boldsymbol{v})=\|\boldsymbol{u}-\boldsymbol{v}\|=\|(0-2), 2-0,2-1) \|=\sqrt{(-2)^{2}+2^{2}+1^{2}}=3
$$

- Dot product in R^{n} :

The dot product of $\boldsymbol{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ and $\boldsymbol{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is the scalar quantity

$$
\boldsymbol{u} \cdot \boldsymbol{v}=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}
$$

- Ex 5: (Finding the dot product of two vectors)

The dot product of $\boldsymbol{u}=(1,2,0,-3)$ and $\boldsymbol{v}=(3,-2,4,2)$ is

$$
\boldsymbol{u} \cdot \boldsymbol{v}=(1)(3)+(2)(-2)+(0)(4)+(-3)(2)=-7
$$

- Theorem 5.3: (Properties of the dot product)

If $\boldsymbol{u}, \boldsymbol{v}$, and \boldsymbol{w} are vectors in R^{n} and c is a scalar, then the following properties are true.
(1) $\boldsymbol{u} \cdot \boldsymbol{v}=\boldsymbol{v} \cdot \boldsymbol{u}$
(2) $\boldsymbol{u} \cdot(\boldsymbol{v}+\boldsymbol{w})=\boldsymbol{u} . \boldsymbol{v}+\boldsymbol{u} \cdot \boldsymbol{w}$
(3) $c(\boldsymbol{u} \cdot \boldsymbol{v})=(c \boldsymbol{u}) \cdot \boldsymbol{v}=\boldsymbol{u} \cdot(c \boldsymbol{v})$
(5) $\boldsymbol{v} \cdot \boldsymbol{v} \geq 0$, and $\boldsymbol{v} \cdot \boldsymbol{v}=0$ if and only if $\boldsymbol{v}=\mathbf{0}$
(4) $\boldsymbol{v} \cdot \boldsymbol{v}=\|\boldsymbol{v}\|^{2}$

- Euclidean n-space:
R^{n} was defined to be the set of all order n-tuples of real numbers. When R^{n} is combined with the standard operations of vector addition, scalar multiplication, vector length, and the dot product, the resulting vector space is called Euclidean n space.
- Ex 6: (Finding dot products)

$$
\begin{aligned}
& \boldsymbol{u}=(2,-2), \boldsymbol{v}=(5,8), \boldsymbol{w}=(-4,3) \\
& \begin{array}{llll}
(a) \boldsymbol{u} \cdot \boldsymbol{v} & (b)(\boldsymbol{u} \cdot \boldsymbol{v}) \boldsymbol{w} & (c) \boldsymbol{u} .(2 \boldsymbol{v}) & (d)\|\boldsymbol{w}\|^{2}
\end{array} \quad(e) \boldsymbol{u} \cdot(\boldsymbol{v}-2 \boldsymbol{w})
\end{aligned}
$$

Sol:
(a) $\boldsymbol{u} . \boldsymbol{v}=(2)(5)+(-2)(8)=-6$
(b) $(\boldsymbol{u} . v) \boldsymbol{w}=-\boldsymbol{w}=-6(-4,3)=(24,-18)$
(c) $\boldsymbol{u} \cdot(2 \boldsymbol{v})=2(\boldsymbol{u} . v)=2(-6)=-12$
(d) $\|\boldsymbol{w}\|^{2}=\boldsymbol{w} \cdot \boldsymbol{w}=(-4)(-4)+(3)(3)=25$
$(e)(\boldsymbol{v}-2 \boldsymbol{w})=(5-(-8), 8-6)=(13,2)$

$$
\boldsymbol{u} \cdot(\boldsymbol{v}-2 \boldsymbol{w})=(2)(13)+(-2)(2)=22
$$

- Ex 7: (Using the properties of the dot product)

$$
\text { Given } \boldsymbol{u} \cdot \boldsymbol{u}=39, \boldsymbol{u} \cdot \boldsymbol{v}=-3, \boldsymbol{v} \cdot \boldsymbol{v}=79
$$

$$
\text { Find }(\boldsymbol{u}+2 \boldsymbol{v}) \cdot(3 \boldsymbol{u}+\boldsymbol{v})
$$

Sol:

$$
\begin{aligned}
(u+2 v) \cdot(3 u+v)= & u .(3 u+v)+2 v \cdot(3 u+v) \\
& =u \cdot(3 u)+u \cdot v+(2 v) \cdot(3 u)+(2 v) \cdot v \\
& =3(u \cdot u)+u \cdot v+6(v \cdot u)+2(v . v) \\
& =3(u \cdot u)+7(u \cdot v)+2(v \cdot v) \\
& =3(39)+7(-3)+2(79)=254
\end{aligned}
$$

- Theorem 5.4: (The Cauchy - Schwarz inequality) If \boldsymbol{u} and \boldsymbol{v} are vectors in R^{n}, then $|\boldsymbol{u} \cdot \boldsymbol{v}| \leq\|\boldsymbol{u}\|\|\boldsymbol{v}\|$
- Ex 8: (An example of the Cauchy - Schwarz inequality)

Verify the Cauchy - Schwarz inequality for $\boldsymbol{u}=(1,-1,3)$ and $\boldsymbol{v}=(2,0,-1)$ Sol:

$$
\begin{aligned}
& u . u=11, u . v=-1, v . v=5 \\
& |u . v|=|-1|=1 \\
& \|u\|\|v\|=\sqrt{u . u} \sqrt{v . v}=\sqrt{11} \sqrt{5}=\sqrt{55} \\
& \Rightarrow|u . v| \leq\|u\|\|v\|
\end{aligned}
$$

- The angle between two vectors in R^{n} :

$$
\cos \theta=\frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\|\boldsymbol{u}\|\|\boldsymbol{v}\|}, 0 \leq \theta \leq \pi
$$

- Note:

The angle between the zero vector and another vector is not defined.

- Ex 9: (Finding the angle between two vectors)

$$
\boldsymbol{u}=(-4,0,2,-2), \boldsymbol{v}=(2,0,-1,1)
$$

Sol:

$$
\begin{aligned}
& \|\boldsymbol{u}\|=\sqrt{\boldsymbol{u} \cdot \boldsymbol{u}}=\sqrt{(-4)^{2}+0^{2}+2^{2}+(-2)^{2}}=\sqrt{24} \\
& \|\boldsymbol{v}\|=\sqrt{\boldsymbol{v} \cdot \boldsymbol{v}}=\sqrt{(2)^{2}+0^{2}+(-1)^{2}+1^{2}}=\sqrt{6} \\
& \boldsymbol{u} \cdot \boldsymbol{v}=(-4)(2)+(0)(0)+(2)(-1)+(-2)(1)=-12 \\
& \Rightarrow \cos \theta=\frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\|\boldsymbol{u}\|\|\boldsymbol{v}\|}=\frac{-12}{\sqrt{24} \sqrt{6}}=\frac{-12}{\sqrt{144}}=-1
\end{aligned}
$$

$\Rightarrow \theta=\pi u$ and v have opposite directions $(u=-2 v)$

- Orthogonal vectors:

Tow vectors \boldsymbol{u} and \boldsymbol{v} in R^{n} are orthogonal if $\boldsymbol{u} . \boldsymbol{v}=\mathbf{0}$

- Note: The vector $\mathbf{0}$ is said to be orthogonal to every vector
- Ex 10: (Finding orthogonal vectors)

Determine all vectors in R^{2} that are orthogonal to $\boldsymbol{u}=(4,2)$
Sol:
Let $\boldsymbol{v}=\left(v_{1}, v_{2}\right) \Rightarrow \boldsymbol{u} . \boldsymbol{v}=(4,2) .\left(v_{1}, v_{2}\right)=4 v_{1}+2 v_{2}=0 \Rightarrow 2 v_{1}+v_{2}=0$
letting $v_{2}=t$ (free variable), then $\{\boldsymbol{v}=(-t / 2, t) \mid t \in R\}$

- Theorem 5.5: (The Triangle inequality)

If \boldsymbol{u} and \boldsymbol{v} are vectors in R^{n}, then $\|\boldsymbol{u}+\boldsymbol{v}\| \leq\|\boldsymbol{u}\|+\|\boldsymbol{v}\|$

- Note:

Equality occurs in the triangle inequality if and only if the vectors \boldsymbol{u} and \boldsymbol{v} have the same direction.

- Theorem 5.6: (The Pythagorean theorem)

If \boldsymbol{u} and \boldsymbol{v} are vectors in R^{n}, then \boldsymbol{u} and \boldsymbol{v} are orthogonal if and only if

$$
\|\boldsymbol{u}+\boldsymbol{v}\|^{2}=\|\boldsymbol{u}\|^{2}+\|\boldsymbol{v}\|^{2}
$$

- Dot product and matrix multiplication:

$$
\begin{aligned}
& \boldsymbol{u}=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right], \quad \boldsymbol{v}=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right] \quad \begin{array}{l}
\text { (A vector } \boldsymbol{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right) \text { in } R^{n} \text { is represented } \\
\text { as an } n \times 1 \text { column matrix) }
\end{array} \\
& \boldsymbol{u} \boldsymbol{v}=\boldsymbol{u}^{T} \boldsymbol{v}=\left[\begin{array}{llll}
u_{1} & u_{2} & \cdots & u_{n}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]=\left[u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}\right]
\end{aligned}
$$

5.2 Inner Product Spaces

- Inner Product:

Let $\boldsymbol{u}, \boldsymbol{v}$, and \boldsymbol{w} be vectors in a vector space V, and let c be any scalar. An inner product on V is a function that associates a real number $\langle\boldsymbol{u}, \boldsymbol{v}\rangle$ with each pair of vectors \boldsymbol{u} and \boldsymbol{v} and satisfies the following axioms.
(1) $\langle\boldsymbol{u}, \boldsymbol{v}\rangle=\langle\boldsymbol{v}, \boldsymbol{u}\rangle$
(2) $\langle\boldsymbol{u}, \boldsymbol{v}+\boldsymbol{w}\rangle=\langle\boldsymbol{u}, \boldsymbol{v}\rangle+\langle\boldsymbol{u}, \boldsymbol{w}\rangle$
(3) $c\langle\boldsymbol{u}, \boldsymbol{v}\rangle=\langle c \boldsymbol{u}, \boldsymbol{v}\rangle$
(4) $\langle\boldsymbol{v}, \boldsymbol{v}\rangle \geq 0$ and $\langle\boldsymbol{v}, \boldsymbol{v}\rangle=0$ if and only if $\boldsymbol{v}=\mathbf{0}$

- Notes:
$\boldsymbol{u} . \boldsymbol{v}=\operatorname{dot}$ product (Euclidean inner product for R^{n})
$<\boldsymbol{u}, \boldsymbol{v}>=$ general inner product for vector space V
- Notes:

A vector space V with an inner product is called an inner product space.
Vector space: $(V,+,$.
Inner product space: $(V,+, .,<,>)$

- Ex 1: (Euclidean inner product for R^{n})

Show that the dot product in R^{n} satisfies the four axioms of an inner product.
Sol:

$$
\begin{aligned}
& \boldsymbol{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right), \boldsymbol{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right) \\
& <\boldsymbol{u}, \boldsymbol{v}>=\boldsymbol{u} \cdot \boldsymbol{v}=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}
\end{aligned}
$$

By Theorem 5.3, this dot product satisfies the required four axioms. Thus it is an inner product on R^{n}.

- Ex 2: (A different inner product for R^{n})

Show that the function defines an inner product on R^{2}, where $\boldsymbol{u}=\left(u_{1}, u_{2}\right)$ and $\boldsymbol{v}=\left(v_{1}, v_{2}\right)$

$$
\langle\boldsymbol{u}, \boldsymbol{v}\rangle=u_{1} v_{1}+2 u_{2} v_{2}
$$

Sol:
(1) $\langle\boldsymbol{u}, \boldsymbol{v}\rangle=u_{1} v_{1}+2 u_{2} v_{2}=v_{1} u_{1}+2 v_{2} u_{2}=\langle\boldsymbol{v}, \boldsymbol{u}\rangle$
(2) $\boldsymbol{w}=\left(w_{1}, w_{2}\right)$
$<\boldsymbol{u}, \boldsymbol{v}+\boldsymbol{w}>=u_{1}\left(v_{1}+w_{1}\right)+2 u_{2}\left(v_{2}+w_{2}\right)$
$=u_{1} v_{1}+u_{1} w_{1}+2 u_{2} v_{2}+2 u_{2} w_{2}$
$=\left(u_{1} v_{1}+2 u_{2} v_{2}\right)+\left(u_{1} w_{1}+2 u_{2} w_{2}\right)$
$=\langle\boldsymbol{u}, \boldsymbol{v}\rangle+\langle\boldsymbol{u}, \boldsymbol{w}\rangle$
(3) $c\langle\boldsymbol{u}, \boldsymbol{v}\rangle=c\left(u_{1} v_{1}+2 u_{2} v_{2}\right)=\left(c u_{1}\right) v_{1}+2\left(c u_{2}\right) v_{2}=\langle c \boldsymbol{u}, \boldsymbol{v}\rangle$
(4) $\langle\boldsymbol{v}, \boldsymbol{v}\rangle=v_{1}^{2}+2 v_{2}^{2} \geq 0$

$$
\left\langle\boldsymbol{v}, \boldsymbol{v}>=0 \Rightarrow v_{1}^{2}+2 v_{2}^{2}=0 \Rightarrow v_{1}=v_{2}=0 \quad(\boldsymbol{v}=\mathbf{0})\right.
$$

- Note: (An inner product on R^{n})

$$
<\boldsymbol{u}, \boldsymbol{v}>=c_{1} u_{1} v_{1}+c_{2} u_{2} v_{2}+\cdots+c_{n} u_{n} v_{n}, \quad c_{i}>0 \quad \text { (weights) }
$$

- Ex 3: (A function that is not an inner product)

Show that the following function is not an inner product on R^{3}

$$
<\boldsymbol{u}, \boldsymbol{v}>=u_{1} v_{1}-2 u_{2} v_{2}+u_{3} v_{3}
$$

Sol:
Let $\boldsymbol{v}=(1,2,1)$, then $\langle\boldsymbol{v}, \boldsymbol{v}\rangle=(1)(1)-2(2)(2)+(1)(1)=-6<0$
Axiom 4 is not satisfied. Thus this function is not an inner product on R^{3}

- Theorem 5.7: (Properties of inner products)

Let $\boldsymbol{u}, \boldsymbol{v}$ and \boldsymbol{w} be vectors in an inner product space V, and let c be any real number.
(1) $\langle\boldsymbol{0}, \boldsymbol{v}\rangle=\langle\boldsymbol{v}, \mathbf{0}\rangle=\mathbf{0}$
(2) $\langle\boldsymbol{u}+\boldsymbol{v}, \boldsymbol{w}\rangle=\langle\boldsymbol{u}, \boldsymbol{w}\rangle+\langle\boldsymbol{v}, \boldsymbol{w}\rangle$
(3) $\langle\boldsymbol{u}, c \boldsymbol{v}\rangle=c<\boldsymbol{u}, \boldsymbol{v}\rangle$
. Norm (length) of $\boldsymbol{u}:\|\boldsymbol{u}\|=\sqrt{\langle\boldsymbol{u}, \boldsymbol{u}>}$
. Note: $\|\boldsymbol{u}\|^{2}=<\boldsymbol{u}, \boldsymbol{u}>$

- Distance between u and v :

$$
d(\boldsymbol{u}, \boldsymbol{v})=\|\boldsymbol{u}-\boldsymbol{v}\|=\sqrt{\langle\boldsymbol{u}-\boldsymbol{v}, \boldsymbol{u}-\boldsymbol{v}\rangle}
$$

- Angle between two nonzero vectors u and v :

$$
\cos \theta=\frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\|\boldsymbol{u}\|\|\boldsymbol{v}\|}, 0 \leq \theta \leq \pi
$$

- Orthogonal: $(\boldsymbol{u} \perp \boldsymbol{v})$
\boldsymbol{u} and \boldsymbol{v} are orthogonal if $\langle\boldsymbol{u}, \boldsymbol{v}\rangle=0$
- Notes:
(1) If $\|\boldsymbol{v}\|=1$, then \boldsymbol{v} is called a unit vector
(2) $\begin{aligned} &\|\boldsymbol{v}\| \neq 1 \\ & \boldsymbol{v} \neq \mathbf{0}\end{aligned} \xrightarrow{\text { Normalizing }} \frac{\boldsymbol{v}}{\|\boldsymbol{v}\|} \quad \begin{gathered}\text { (the unit vector in the } \\ \text { direction of } \boldsymbol{v} \text {) }\end{gathered}$
not a unit vector
- Properties of norm:
(1) $\|u\| \geq 0$
(2) $\|\boldsymbol{u}\|=0$ if and only if $\boldsymbol{u}=\mathbf{0}$
(3) $\|c \boldsymbol{u}\|=|c|\|\boldsymbol{u}\|$
- (Properties of distance)
(1) $d(\boldsymbol{u}, \boldsymbol{v}) \geq 0$
(2) $d(\boldsymbol{u}, \boldsymbol{v})=0$ if and only if $\boldsymbol{u}=\boldsymbol{v}$
(3) $d(\boldsymbol{u}, \boldsymbol{v})=d(\boldsymbol{v}, \boldsymbol{u})$
- Theorem 5.8:

Let \boldsymbol{u} and \boldsymbol{v} be vectors in an inner product space V.
(1) Cauchy-Schwarz inequality: $|<\boldsymbol{u} . \boldsymbol{v}\rangle \mid \leq\|\boldsymbol{u}\|\|\boldsymbol{v}\|$
(2) Triangle inequality: $\|u+v\| \leq\|u\|+\|v\|$
(3) Pythagorean theorem:

Theorem 5.4
Theorem 5.5
Theorem 5.6
\boldsymbol{u} and \boldsymbol{v} are orthogonal if and only if $\|\boldsymbol{u}+\boldsymbol{v}\|^{2}=\|\boldsymbol{u}\|^{2}+\|\boldsymbol{v}\|^{2}$

- Orthogonal projections in inner product spaces:

Let \boldsymbol{u} and \boldsymbol{v} be two vectors in an inner product space V, such that $\boldsymbol{v} \neq 0$. Then the orthogonal projection of u onto v is given by $\operatorname{proj}_{v} \boldsymbol{u}=\frac{\langle\boldsymbol{u}, \boldsymbol{v}\rangle}{\langle\boldsymbol{v}, \boldsymbol{v}\rangle} \boldsymbol{v}$

- Note:

If \boldsymbol{v} is a unit vector, then $\langle\boldsymbol{v}, \boldsymbol{v}\rangle=\|\boldsymbol{v}\|^{2}=1$.
The formula for the orthogonal projection of \boldsymbol{u} onto \boldsymbol{v} takes the following simpler form:

$$
\operatorname{proj}_{v} \boldsymbol{u}=\langle\boldsymbol{u}, \boldsymbol{v}\rangle \boldsymbol{v}
$$

- Ex 4: (Finding an orthogonal projection in R^{3})

Use the Euclidean inner product in R^{3} to find the orthogonal projection of $\boldsymbol{u}=(6,2,4)$ onto $\boldsymbol{v}=(1,2,0)$.
Sol:

$$
\begin{aligned}
&\langle\boldsymbol{u}, \boldsymbol{v}\rangle=(6)(1)+(2)(2)+(4)(0)=10 \\
&\langle\boldsymbol{v}, \boldsymbol{v}\rangle=1^{2}+2^{2}+0^{2}=5 \\
& \operatorname{proj}_{v} \boldsymbol{u}=\frac{\langle\boldsymbol{u}, \boldsymbol{v}\rangle}{\langle\boldsymbol{v}, \boldsymbol{v}\rangle} \boldsymbol{v}=\frac{10}{5}(1,2,0)=(2,4,0)
\end{aligned}
$$

- Note:

$$
\boldsymbol{u}-\operatorname{proj}_{v} \boldsymbol{u}=(6,2,4)-(2,4,0)=(4,-2,4) \text { is orthogonal to } \boldsymbol{v}=(1,2,0)
$$

