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5.1 Length and Dot Product in Rn

◼ Length:

The length of a vector v = (v1, v2, …, vn) in Rn is given by

◼ Note: The length of a vector is also called its norm. 

◼ Notes: Properties of length

is called a unit vector
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◼ Ex 1:

(a) In R5, the length of v = (0, -2, 1, 4, -2) is given by 

(v is a unit vector)

(b) In R3 the length of                                          is given by 
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◼ A standard unit vector in Rn:

(1) c > 0 ⇒ u and v have the same direction

◼ Notes: (Two nonzero vectors are parallel)

{e1, e2, …, en} = {(1,0,…,0), (0,1,…,0), …, (0,0,…,1)}

◼ Ex 2:

the standard unit vector in R2: {i, j} = {(1, 0), (0, 1)}

the standard unit vector in R3: {i, j, k} = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}

(2) c < 0 ⇒ u and v have the opposite direction

u = cv
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◼ Theorem 5.1: (Length of a scalar multiple)

Let v be a vector in Rn and c be a scalar, then

◼ Theorem 5.2: (Unit vector in the direction of v)

If v is a nonzero vector in Rn , then the vector                has length 1 and

has the same direction as v. 

This vector u is called the unit vector in the direction of v.

◼ Note:

The process of finding the unit vector in the direction of v is called normalizing the 

vector v. 
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◼ Ex 3: (Finding a unit vector)

Find the unit vector in the direction of v = (3, -1, 2), and verify that this vector has 

length 1.

◼ Sol:

is a unit vector
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◼ Distance between two vectors:

The distance between two vectors u and v in Rn is: 

(1) d(u, v) ≥ 0

(2) d(u, v) = 0 if and only if u = v

(3) d(u, v) = d(v, u) 

◼ Notes: (Properties of distance)

The distance between u = (0, 2, 2) and v = (2, 0, 1) is

◼ Ex 4: (Distance between 2 vectors)
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◼ Dot product in Rn:

The dot product of u = (u1, u2, …, un) and v = (v1, v2, …, vn) is the scalar quantity

◼ Ex 5: (Finding the dot product of two vectors)

The dot product of u = (1, 2, 0, -3) and v = (3, -2, 4, 2) is
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◼ Theorem 5.3: (Properties of the dot product)

If u, v, and w are vectors in Rn and c is a scalar, then the following properties are true.

(1) u.v = v.u

(2) u.(v + w) = u.v + u.w

(3) c(u.v) = (cu).v = u.(cv)

(5) v.v ≥ 0, and v.v = 0 if and only if v = 0

(4)
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◼ Euclidean n-space:

Rn was defined to be the set of all order n-tuples of real numbers. When Rn is 

combined with the standard operations of vector addition, scalar multiplication, 

vector length, and the dot product, the resulting vector space is called Euclidean n-

space.

https://manara.edu.sy/


https://manara.edu.sy/Inner Product Spaces 12/302023-2024

Sol:

(a) u.v (b) (u.v)w (c) u.(2v) (d) (e) u.(v - 2w)

◼ Ex 6: (Finding dot products)

u = (2, -2), v = (5, 8), w = (-4, 3)

(a) u.v = (2)(5) + (-2)(8) = -6 

(b) (u.v)w = -w = -6(-4, 3) = (24, -18)

(c) u.(2v) = 2(u.v) =2(-6) = -12

(e) (v - 2w) = (5 – (-8), 8 – 6) = (13, 2)

u.(v - 2w) = (2)(13) + (-2)(2) = 22

(d)         = w.w = (-4)(-4) + (3)(3) = 25
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Sol:

◼ Ex 7: (Using the properties of the dot product)

Given u.u = 39, u.v = -3, v.v = 79

Find (u + 2v).(3u + v)

(u + 2v).(3u + v) = u.(3u + v) + 2v. (3u + v)

 = u.(3u) + u.v + (2v). (3u) + (2v).v

 = 3(u.u) + u.v + 6(v.u) + 2(v.v)

 = 3(u.u) + 7(u.v) + 2(v.v)

 = 3(39) + 7(-3) + 2(79) = 254

https://manara.edu.sy/


https://manara.edu.sy/Inner Product Spaces 14/302023-2024

◼ Theorem 5.4: (The Cauchy - Schwarz inequality)

If u and v are vectors in Rn, then

◼ Ex 8: (An example of the Cauchy - Schwarz inequality)

Verify the Cauchy - Schwarz inequality for u = (1, -1, 3) and v = (2, 0, -1)

Sol:

u.u = 11, u.v = -1, v.v = 5
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◼ The angle between two vectors in Rn:

The angle between the zero vector and another vector is not defined.

cos q < 0 cos q = 0 cos q > 0

◼ Note:
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Sol:

u and v have opposite directions (u = -2v)

◼ Ex 9: (Finding the angle between two vectors)

u = (-4, 0, 2, -2), v = (2, 0, -1, 1)
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◼ Orthogonal vectors:

◼ Note: The vector 0 is said to be orthogonal to every vector

Tow vectors u and v in Rn are orthogonal if u.v = 0 

Determine all vectors in R2 that are orthogonal to u = (4, 2)

Sol:

◼ Ex 10: (Finding orthogonal vectors)

Let v = (v1, v2) ⇒ u.v = (4, 2).(v1, v2) = 4v1 + 2v2 = 0 ⇒ 2v1 + v2 = 0 

letting v2 = t (free variable), then {v = (-t/ 2, t)|t ϵ R} 
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◼ Theorem 5.5: (The Triangle inequality)

If u and v are vectors in Rn, then

◼ Note:

Equality occurs in the triangle inequality if and only if the vectors u and v have the 

same direction.

If u and v are vectors in Rn, then u and v are 

orthogonal if and only if   

◼ Theorem 5.6: (The Pythagorean theorem)
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◼ Dot product and matrix multiplication:

(A vector u = (u1, u2, …, un) in Rn is represented 

as an n×1 column matrix) 
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5.2 Inner Product Spaces 

◼ Inner Product:

(1) <u, v> = <v, u> 

 (2) <u, v + w> = <u, v> + <u, w> 

 (3) c <u, v> = <cu, v> 

 (4) <v, v> ≥ 0 and <v, v> = 0 if and only if v = 0 

Let u, v, and w be vectors in a vector space V, and let c be any scalar. An inner 

product on V is a function that associates a real number <u, v> with each pair of 

vectors u and v and satisfies the following axioms.
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◼ Notes:

u.v = dot product (Euclidean inner product for Rn)

<u, v> = general inner product for vector space V

◼ Notes:

A vector space V with an inner product is called  an inner product space.

Vector space: (V, + , .)

 Inner product space: (V, + , ., <, >)
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◼ Ex 1: (Euclidean inner product for Rn)

Show that the dot product in Rn satisfies the four axioms of an inner product.

Sol:

By Theorem 5.3, this dot product satisfies the required four axioms. Thus it is an 

inner product on Rn.

u = (u1, u2, …, un), v = (v1, v2, …, vn) 
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◼ Ex 2: (A different inner product for Rn)

Show that the function defines an inner product on R2, where u = (u1, u2) and v = (v1, v2) 

<u, v> = u1v1 + 2u2v2 

Sol:

(1) <u, v> = u1v1 + 2u2v2 = v1u1 + 2v2u2 = <v, u>

(2) 
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(3) c <u, v> = c (u1v1 + 2u2v2) = (cu1)v1 + 2(cu2)v2 = <cu, v>

(4) 

◼ Note: (An inner product on Rn)

(weights)

Show that the following function is not an inner product on R3

◼ Ex 3: (A function that is not an inner product)
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Let v = (1, 2, 1), then <v, v> = (1)(1) - 2(2)(2) + (1)(1) = -6 < 0

Axiom 4 is not satisfied. Thus this function is not an inner product on R3

Sol:

Let u, v and w be vectors in an inner product space V, and let c be any real number. 

 (1) <0, v> = <v, 0> = 0

 (2) <u + v, w> = <u, w> + <v, w>

 (3) <u, cv> = c <u, v>

◼ Theorem 5.7: (Properties of inner products)
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◼ Norm (length) of u:

◼ Note:

u and v are orthogonal if <u, v> = 0

◼ Distance between u and v:

◼ Angle between two nonzero vectors u and v:

◼ Orthogonal:
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◼ Notes:

(1) If                , then v is called a unit vector

(2) (the unit vector in the 

  direction of v)

not a unit vector

Normalizing

◼ Properties of norm:

(1)

(2)               if and only if u = 0

(3)
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(1) d(u, v) ≥ 0

(2) d(u, v) = 0 if and only if u = v

(3) d(u, v) = d(v, u) 

◼ (Properties of distance)

◼ Theorem 5.8:

Let u and v be vectors in an inner product space V.

(1) Cauchy-Schwarz inequality:     Theorem 5.4

(2) Triangle inequality:      Theorem 5.5

(3) Pythagorean theorem:      Theorem 5.6

      u and v are orthogonal if and only if   
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◼ Orthogonal projections in inner product spaces:

Let u and v be two vectors in an inner product space V, such that v ≠ 0. Then the 

orthogonal projection of u onto v is given by

If v is a unit vector, then                                .

The formula for the orthogonal projection of u onto v takes the following simpler form:

◼ Note:
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◼ Ex 4: (Finding an orthogonal projection in R3)

Use the Euclidean inner product in R3 to find the orthogonal projection of u = (6, 2, 4) 

onto v = (1, 2, 0).

Sol:

<u, v> = (6)(1) + (2)(2) + (4)(0) = 10

<v, v> = 12 + 22 + 02 = 5

◼ Note:
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