
https://manara.edu.sy/Inner Product Spaces 1/252023-2024

CECC122: Linear Algebra and Matrix Theory

Lecture Notes 8: Inner Product Spaces: Part B

Ramez Koudsieh, Ph.D.

Faculty of Engineering

Department of Informatics

Manara University

https://manara.edu.sy/


https://manara.edu.sy/Inner Product Spaces 2/252023-2024

5.1 Length and Dot Product in Rn

5.2 Inner Product Spaces 

5.3 Orthonormal Bases: Gram-Schmidt Process

5.4 Mathematical Models and Least Square Analysis

https://manara.edu.sy/


https://manara.edu.sy/Inner Product Spaces 3/252023-2024

5.3 Orthonormal Bases: Gram-Schmidt Process

◼ Orthogonal:

A set S of vectors in an inner product space V is called an orthogonal set if every 

pair of vectors in the set is orthogonal.

An orthogonal set in which each vector is a unit vector is called orthonormal

◼ Orthonormal:
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If S is a basis, then it is called an orthogonal basis or an orthonormal basis.

◼ Note:

Show that the following set is an orthonormal basis.

◼ Ex 1: (A nonstandard orthonormal basis for R3)
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Show that each vector is 

of length 1 

Thus S is an orthonormal set

Show that the three vectors are 

mutually orthogonal. 

Sol:
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If S = {v1, v2, …, vn} is an orthogonal set of nonzero vectors in an inner product space 

V, then S is linearly independent. 

◼ Theorem 5.9: (Orthogonal sets are linearly independent) 

◼ Corollary to Theorem 5.9:

If V is an inner product space of dimension n, then any orthogonal set of n nonzero 

vectors is a basis for V.
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◼ Ex 2: (Using orthogonality to test for a basis) 

Show that the following set is a basis for R4 

v1, v2, v3, v4: nonzero vectors

Sol:

⇒ S is orthogonal ⇒ S is a basis for R4 
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If B = {v1, v2, …, vn} is an orthonormal basis for an inner product space V, then the 

coordinate representation of a vector w with respect to B is

◼ Theorem 5.10: (Coordinates relative to an orthonormal basis) 

If B = {v1, v2, …, vn} is an orthonormal basis for V and w ϵV, then the corresponding 

coordinate matrix of w relative to B is 

 

◼ Note:
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Find the coordinates of vector w = (5, -5, 2) relative to the following orthonormal basis 

for R3      .

◼ Ex 3: (Representing vectors relative to an orthonormal basis) 

Sol:

https://manara.edu.sy/


https://manara.edu.sy/Inner Product Spaces 10/252023-2024

(1) Let B = {v1, v2, …, vn} is a basis for an inner product space V 

(2) Let B'  = {w1, w2, …, wn}, where

◼ Theorem 5.11: (Gram-Schmidt orthonormalization process)

Then B′ is an orthogonal basis for V
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(3) Let            

    Then B ″ = {u1, u2, …, un} is an orthonormal basis for V

Also, span{v1, v2, …, vn} = span{u1, u2, …, uk} for k = 1, 2, . . . , n
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Apply the Gram-Schmidt orthonormalization process to the basis B for R2  

◼ Ex 4: (Applying the Gram-Schmidt orthonormalization process) 

Sol:

The set B′ = {w1, w2} is an orthogonal basis for R2
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The set B″ = {u1, u2} is an orthonormal basis for R2
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Apply the Gram-Schmidt orthonormalization process to the basis B for R3  

◼ Ex 5: (Applying the Gram-Schmidt orthonormalization process) 

Sol:
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The set B′ = {w1, w2, w3} is an orthogonal basis for R3

The set B″ = {u1, u2, u3} is an orthonormal basis for R3
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5.4 Mathematical Models and Least Square Analysis

◼ Best Approximation; Least Squares:

Least Squares Problem: Given Ax = b of m equations in n unknowns, find x in Rn 

that minimizes with respect to the Euclidean inner product on Rm. We call 

x, if it exists, a least squares solution of Ax = b, b - Ax the least squares error vector, 

and                the least squares error
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◼ Finding Least Squares Solutions: ATAx = ATb 
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◼ Ex 1: Finding Least Squares Solutions

Find the Least Squares Solution, the least squares error vector, and the least squares 

error of the linear system 4
23 1
4 32

yx
yx
yx

- =

+ =

- + =1 1
14 331 2 3 2

3 211 2 4 2 4

4
131 2 1

101 2 4 3

14 3 1 17/95

3 21 10 143/285

b

x b

T

T

T T

A A

A

x x
A A A

y y

 -
-    -= =     --   -  

 
   -  = =    -   

 

-         
=  =  =         -         

Sol:
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◼ Theorem 5.12:

If A is an m×n matrix with linearly independent column vectors, then for every m×1 

matrix b, the linear system Ax = b has a unique least squares

solution. This solution is given by 

x = (ATA)-1ATb
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◼ Mathematical Modeling Using Least Squares

Fitting a Curve to Data

(x1, y1), (x2, y2), ..., (xn, yn)

mathematical model
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Least Squares Fit of a Straight Line
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1 1 1 2 2 2( ) , ( ) , , ( )n n nd y a bx d y a bx d y a bx= - + = - + = - + residuals.

◼ Ex 2: Least Squares Straight Line Fit

(2, 1), (5, 2), (7, 3), and (8, 3)Find the least squares straight line fit to the 4 points

Sol:
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Least Squares Fit of a Polynomial

(x1, y1), (x2, y2), ..., (xn, yn)
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◼ Ex 3: Fitting a Quadratic Curve to Data

Laboratory experiment

Newton’s second law of motion
2

0 0

1

2
s s v t gt= + +

Approximate g

Sol:

Let
2

0 1 2s a a t a t= + +

(0.1,-0.18), (0.2, 0.31), (0.3, 1.03), (0.4, 2.48), (0.5, 3.73)
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