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6.1 Introduction to Linear Transformations

◼ Images And Preimages of Functions:

V: the domain of T

W: the codomain of T

Function T that maps a vector space V into a vector space W

T:V                     W, V, W: vector spacesMapping

◼ Image of v under T:

If v is in V and w is in W such that: T(v) = w

Then w is called the image of v under T 
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◼ Images And Preimages of Functions:

◼ The range of  T: The set of all images of vectors in V.

◼ The preimage of  w: The set of all v in V such that T(v) = w.

◼ Ex 1: (A function from R2 into R2 )

(a) Find the image of v = (-1, 2).  (b) Find the preimage of w = (-1, 11)

Sol:

: ( , )

( , ) ( , )

v2 2 2
1 2

1 2 1 2 1 22

T R R v v R

T v v v v v v

→ = 

= - +

( ) ( , ) ( ) ( , ) ( , ( )) (  )v v1 2 1 2 1 2 1 2 2 3 3,a T T= -  = - = - - - + = -
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Thus {(3, 4)} is the preimage of w = (-1, 11).

( ) ( ) ( , ) ( , ) ( , ) (  )v w 1 2 1 2 1 21 11 2 1 11,b T T v v v v v v= = -  = - + = -

 

     

,  

1 2

1 2

1 2

1

2 11

3 4

v v

v v

v v

 - = -

+ =

 = =

◼ Linear Transformation (L.T.):

V, W: vector spaces

T: V → W: Linear Transformation 

(1)  ( ) ( ) ( ),    ,u v u v u vT T T V+ = +  

(2)  ( ) ( ),    u uT c cT c R=  

https://manara.edu.sy/


https://manara.edu.sy/Linear Transformations 6/252023-2024

◼ Ex 2: (Functions that are not linear transformations)

( ) ( ) sina f x x=

sin( ) sin( ) sin( )1 2 1 2x x x x+  +

sin( ) sin( ) sin( )
2 3 2 3

   
+  + not a linear transformations

( ) ( ) 2b f x x=

( )2 2 2
1 2 1 2x x x x+  + ( )2 2 21 2 1 2+  + not a linear transformations

( ) ( ) 1c f x x= +

( )1 2 1 2 1f x x x x+ = + +

( ) ( ) ( ) ( )1 2 1 2 1 21 1 2f x f x x x x x+ = + + + = + +

( ) ( ) ( )1 2 1 2f x x f x f x+  + not a linear transformations

https://manara.edu.sy/


https://manara.edu.sy/Linear Transformations 7/252023-2024

(1) f(x) = x + 1 is called a linear function because its graph is a line. 

(2) f(x) = x + 1 is not a linear transformation from a vector space R into R because it 

preserves neither vector addition nor scalar multiplication

◼ Notes: Two uses of the term “linear”

◼ Identity transformation:

◼ Zero transformation:

: ( ) ,  0v vT V W T V→ =  

: ( ) ,  v v vT V V T V→ =  
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◼ Theorem 6.1: (Properties of linear transformations)

: , ,u vT V W V→ 

(1) ( )0 0T =

(2) ( ) ( )v vT T- = -

(3) ( ) ( ) ( )u v u vT T T- = -

(4) If   then

     ( )

              ( ) ( ) ( )

1 2

1 2

1

n

n

n

v v v v

v v v v

v v v

1 2

1 2

1 2 2

( )
n

n

n

c c c

T T c c c

cT c T c T

= + + +

= + + +

= + + +
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Let T: R3 →R3 be a linear transformation such that 

Sol:

Find T(2, 3, -2)

◼ Ex 3: (Linear transformations and bases)

( , , ) ( , , ), ( , , ) ( , , ), ( , , ) ( , , )1 0 0 2 1 4 0 1 0 1 5 2 0 0 1 0 3 1T T T= - = - =

( , , ) ( , , ) ( , , ) ( , , )2 3 2 2 1 0 0 3 0 1 0 2 0 0 1- = + -

( , , ) ( , , ) ( , , ) ( , , )

                ( , , ) ( , , ) ( , , )

                ( , , )

2 3 2 2 1 0 0 3 0 1 0 2 0 0 1

2 2 1 4 3 1 5 2 2 0 3 1

7 7 0

T T T T

T

- = + -

= - + - -

=
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The function T: R2 →R3 is defined as

Sol:

(vector addition)

(scalar multiplication)

◼ Ex 4: (A linear transformation defined by a matrix)

( )v v 1

2

3 0
2 1
1 2

v
T A v

 
  = =
    - - (a) Find T(v), where v = (2, -1)

(b) Show that T is a linear transformation from R2 into R3 

(a) v = (2, -1) ( )v v
3 0 6

2
2 1 3

1
1 2 0

T A
   

    = = = -    - -   

R3 vector
R2 vector

⇒ T(2,-1) = (6, 3, 0)

(b) T(u + v) = A(u + v) = Au + Av = T(u) + T(v) 

T(cu) = A(cu) = c(Au) = cT(u) 
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◼ Theorem 6.2: (The linear transformation given by a matrix)

Let A be an mn matrix. The function T defined by T(v) = Av is a linear 

transformation from Rn into Rm.

 
◼ Note:

v

1 11 1 12 2 111 12 1

2 21 1 22 2 221 22 2

1 1 2 21 2

n nn

n nn

n m m mn nm m mn

v a v a v a va a a
v a v a v a va a aA

v a v a v a va a a

+ + +     
     + + +

= =     
     + + +     

Rm vectorRn vector

T(v) = Av Rn into Rm

T: Rn →Rm
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◼ Ex 5: (Rotation in the plane)

Show that the L.T. T: R2 →R2 given by the matrix

has the property that it rotates every vector in R2 counterclockwise about the origin 

through the angle . 

Sol:

r: the length of v

: the angle from the positive x-axis 

counterclockwise to the vector v 

cos sin

sin cos
A

 
 

- 
=   

v = (x, y) = (r cos , r sin ) (polar coordinates)
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r: the length of T(v)

 + : the angle from the positive x-axis counterclockwise to the vector T(v)

Thus, T(v) is the vector that results from rotating the vector v counterclockwise 

through the angle . 

cos sin cos sin cos
( )

sin cos sin cos sin

cos cos sin sin
 

sin cos cos sin

cos( )
                 

sin( )

v v
x r

T A
y r

r r
r r

r
r

    
    

   
   

 
 

- -       
= = =              

- 
=  + 

+ 
=  + 
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is called a projection in R3.

The linear transformation T: R3 →R3 is given by the matrix

◼ Ex 6: (A projection in R3)

A
 
 =
 
 

1 0 0
0 1 0
0 0 0

If v = (x, y, z) is a vector in R3, then

T(v) = (x, y, 0).
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6.2 The Kernel and Range of a Linear Transformation

◼ Kernel of a linear transformation T:

Let T: V → W be a linear transformation. Then the set of all vectors v in V that satisfy 

T(v) = 0 is called the kernel of T and is denoted by ker(T).

ker( ) { | ( ) , }0v v vT T V= =  

◼ Ex 1: (The kernel of the zero and identity transformations)

(a) T(v) = 0 (the zero transformation T: V → W )

  ker(T) = V

(b) T(v) = v (the identity transformation T: V → V )

  ker(T) = {0}
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◼ Ex 2: (Finding the kernel of a L.T.)

T(v) = (x, y, 0) T: R3 →R3

 ker(T) = ?

Sol:

ker(T) = {(0, 0, z)| z is a real number}

◼ Ex 3: (Finding the kernel of a linear transformation)

( ) ( : )x x
1

3 2
2

3

1 1 2
1 2 3

x
T A x T R R

x

 
- -   = = → -   

 
ker(T) = ?
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Sol:

ker( ) {( , , )| , , ) ( , ), ( ) }x 3
1 2 3 1 2 3 1 2 30 0( , ,T x x x T x x x x x x R= = = 

, , ) (0,0)1 2 3(T x x x =

1

2

3

1 1 2 0
1 2 3 0

x
x
x

 
- -     =   -    

 

1 1 2 0

1 2 3 0

- - 
 - 

Gauss-Jordan Elimination 1 0 1 0

0 1 1 0

- 
 
 

1

2

3

1
1

1

tx
x t t
x t

    
    = - = - 
         

⇒ ker(T) = {t(1, -1, 1)|t is a real number} = span{(1, -1, 1)
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◼ Range of a linear transformation T:

Let T: V → W be a L.T.

Then the set of all vectors w in W that are images of vectors in V is called the 

range of T and is denoted by range(T)

range( ) { ( )| }T T V=  v v

◼ Theorem 6.4: (The range of T is a subspace of W)

The range of a linear transformation T: V → W is a subspace of the W

◼ Theorem 6.3: (The kernel is a subspace of V)

The kernel of a linear transformation T: V → W is a subspace of the domain V.
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◼ Notes:

T: V → W: is Linear Transformation

(1) ker(T) is a subspace of V

(2) Range(T) is a subspace of W 

◼ Rank of a linear transformation T: V → W:

 rank(T) = the dimension of the range of T

◼ Nullity of a linear transformation T: V → W:

 nullity(T) = the dimension of the kernel of T

◼ Note:

Let T: Rn → Rm be the L.T. given by T(x) = Ax. Then 

⇒ rank(T) = rank(A),  nullity(T) = nullity(A)
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◼ Theorem 6.5: (Sum of rank and nullity)

Let T: V → W be a L.T. from an n-dimensional vector space V into a vector space W. 

Then

 rank(T) + nullity(T) = n

 dim(range of T) + dim(kernel of T) = dim(domain of T)

Sol:

◼ Ex 4: (Finding rank and nullity of a linear transformation)

Find the rank and nullity of the L.T. T: R3 → R3 defined by 1 0 2

0 1 1

0 0 0

A
- 

 =
 
 rank(T) = rank(A) = 2

 nullity(T) = dim(domain of T) - rank(T) = 3 - 2 = 1 
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◼ Ex 5: (Finding rank and nullity of a linear transformation)

Let T: R5 → R7 be a linear transformation

(a) Find the dimension of the kernel of T if the dimension of the range is 2

(b) Find the rank of T if the nullity of T is 4

(c) Find the rank of T if ker(T) = {0}

Sol:

(a) dim(domain of T) = 5

 dim(ker of T) = n - dim(range of T) = 5 - 2 = 3

(b) rank(T) = n - nullity(T) = 5 – 4 = 1

(c) rank(T) = n - nullity(T) = 5 – 0 = 5
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◼ One-to-one:

A function T: V → W is one-to-one when the preimage of every w in the range 

consists of a single vector

T is one-to-one if and only if, for all u and v in V, T(u) = T(v) implies u = v.
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◼ Onto:

A function T: V → W is onto when every element in W has a preimage in V. (T is 

onto W when W is equal to the range of T)

◼ Theorem 6.6: (One-to-one linear transformation)

Let T: V → W be a linear transformation. Then T is one-to-one iff ker(T) = {0}

◼ Ex 6: (One-to-one and not one-to-one linear transformation)

(a) The linear transformation T: M3x2 → M2x3 given by T(A) = AT is one-to-one 

because its kernel consists of only the mxn zero matrix 
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Let T: V → W be a linear transformation, where W is finite dimensional Then T is 

onto iff the rank of T is equal to the dimension of W.

(b) The zero transformation T: R3 → R3 is not one-to-one because its kernel is all of R3

◼ Theorem 6.7: (Onto linear transformation)

◼ Theorem 6.8: (One-to-one and onto linear transformation)

Let T: V → W be a linear transformation, with vector space V and W both of 

dimension n. Then T is one-to-one iff it is onto.

https://manara.edu.sy/


https://manara.edu.sy/Linear Transformations 25/252023-2024

◼ Ex 7:

Let T: Rn → Rm be a L.T. given by T(x) = Ax. Find the nullity and rank of T to 

determine whether T is one-to-one, onto, or neither

1 2 0 1 2 1 2 0
1 2 0

( ) 0 1 1 , ( ) 0 1 , ( ) , ( ) 0 1 1
0 1 1

0 0 1 0 0 0 0 0

a A b A c A d A
     

      = = = = -      
     

Sol:

T: Rn → Rm dim(domain of T)  rank(T)  nullity(T)  one-to-one  onto 

(a) T: R3 → R3    3         3     0     Yes    Yes

(b) T: R2 → R3    2         2     0     Yes    No

(c) T: R3 → R2    3         2     1     No    Yes

(d) T: R3 → R3    3         2     1     No    No
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