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6.3 Matrices for Linear Transformations

◼ Two representations of the linear transformation T: R3→R3

◼ Three reasons for matrix representation of a linear transformation:

◼  It is simpler to write.

◼  It is simpler to read.

◼  It is more easily adapted for computer use.
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◼ Theorem 6.9: (Standard matrix for a linear transformation)

Let T: Rn → Rm be a linear transformation such that
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then the mxn matrix whose n columns correspond to T(ei)
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is such that T(v) = Av for  every v in Rn. A is called the standard matrix for T
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Sol:

Vector Notation                      Matrix Notation

◼ Ex 1: (Finding the standard matrix of a linear transformation)

Find the standard matrix for the L.T. T: R3 →R2 defined by ( , , ) ( 2 , 2 )T x y z x y x y= − +

( ) (1, 0, 0) (1, 2)T T= =e
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( ) (0, 1, 0) ( 2, 1) T T= = −e
2

( ) (0, 0, 1) (0, 0) T T= =e
3
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◼ Check:

1 2 0
( ) ( ) ( )

2 1 0
A T T T − 
= =     

e e e
1 2 3

1 2 0 2
2 1 0 2

x x x yA y y x yz z

   
− −   

   = =
+            

i.e. ( , , ) ( 2 , 2 )T x y z x y x y= − +

◼ Notes:

  (1) The standard matrix for the zero transformation from Rn into Rm is the mn zero 

matrix.

  (2) The standard matrix for the identity transformation from Rn into Rn  is the nn 

identity matrix In
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◼ Composition of T1:R
n → Rm with T2: R

m → Rp:

2 1( ) ( ( )),   nT T T R= v v v

2 1

1

,   

domain of domain of 

T T T

T T

=

=

◼ Theorem 6.10: (Composition of linear transformations)

Let T1: R
n → Rm and T2: R

m → Rp be L.T. with standard matrices A1 and A2, then

(1) The composition T: Rn → Rp, defined by T(v) = T2(T1(v)), is a L. T. 

(2) The standard matrix A for T is given the matrix product A = A2A1

◼ Note:
1 2 2 1T T T T

https://manara.edu.sy/


https://manara.edu.sy/Linear Transformations 8/282023-2024

Sol:

◼ Ex 2: (The standard matrix of a composition)

Let T1 and T2 be L. T. from R3 into R3 such that

1 2( , , ) (2 , 0, ), ( , , ) ( , , )T x y z x y x z T x y z x y z y= + + = −

Find the standard matrices for the compositions 

2 1 1 2 and 'T T T T T T= =

1 2

2 1 0 1 1 0
0 0 0 , 0 0 1
1 0 1 0 1 0

A A
−   

   = =
      

standard matrices for T1 standard matrices for T2
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2 1The standard matrix for T T T=

2 1

1 1 0 2 1 0 2 1 0
0 0 1 0 0 0 1 0 1
0 1 0 1 0 1 0 0 0

A AA
−     

     = = =
          

1 2The standard matrix for 'T T T=

1 2

2 1 0 1 1 0 2 2 1
0 0 0 0 0 1 0 0 0
1 0 1 0 1 0 1 0 0

'A AA
− −     

     = = =
          
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◼ Inverse linear transformation:

◼ Note:

If the transformation T  is invertible, then the inverse is unique and denoted by T –1 .

If T1: R
n → Rn and T2: R

n → Rn are L.T. such that for every v in Rn

2 1 1 2( ( ))    and   ( ( ))  T T T T= =v v v v

Then T2 is called the inverse of T1 and T1 is said to be invertible
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◼ Note:

If T is invertible with standard matrix A, then the standard matrix for T –1 is A–1.

(1)  T is invertible.

(2)  A is invertible.

◼ Theorem 6.11: (Existence of an inverse transformation)

Let T: Rn → Rn be a L.T. with standard matrices, then the following conditions are 

equivalent
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Sol:

Show that T is invertible, and find its inverse.

◼ Ex 3: (Finding the inverse of a linear transformation)

The L. T. T: R3 → R3 defined by

1 2 3 1 2 3 1 2 3 1 2 3( , , ) (2 3 , 3 3 , 2 4 )T x x x x x x x x x x x x= + + + + + +

The standard matrix for T

2 3 1

3 3 1

2 4 1

A
 
 =
 
 

1 2 3

1 2 3

1 2 3

2 3

3 3

2 4

x x x
x x x
x x x

 + +

 + +

 + +

3

2 3 1 1 0 0

3 3 1 0 1 0

2 4 1 0 0 1

A I
 
 =  
 
 
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G.J. Elimination 1

1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 6 2 3

I A−

− 
   − =   − − 

Therefore T is invertible and the standard matrix for T –1 is A–1.

1

1 1 0

1 0 1

6 2 3

A−

− 
 = −
 − − 

1 1 2
1 1

2 1 3

3 1 2 3

1 1 0

( ) 1 0 1
6 2 36 2 3

x x x
T A x x x

x x x x

− −

−  − +  
    = = − = − +
     − −− −     

v v

1

1 2 3 1 2 1 3 1 2 3( , , ) ( , , 6 2 3 )T x x x x x x x x x x− = − + − + − −In other words
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Thus, the matrix of T relative to the bases B and B ' is

◼ The matrix of T relative to the bases B and B ':

T: V → W a linear transformation

{ , , , }

{ , , , }'

B

B

=

=

n

m

v v v

w w w
1 2

1 2

a basis for V

a basis for W

     ( ) ( ) ( )
' ' ' m nB B B

A T T T M 
 =  nv v v

1 2
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◼ Transformation matrix for nonstandard bases:

Let V and W be finite-dimensional vector spaces with basis B and B ' respectively, where 

{ , , , }B = nv v v
1 2

If T: V → W a linear transformation such that 

     
11 12 1

21 22 2

1 2

( ) ,   ( ) , , ( )
' ' '

n

n
B B B

m m mn

a a a
a a aT T T

a a a

     
     

= = =     
     
     

nv v v
1 2

Then the mxn matrix whose n columns correspond to   ( )
'B

T iv
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11 12 1

21 22 2

1 2

n

n

m m mn

a a a
a a aA

a a a

 
 

=  
 
 

is such that                                  for every v in V     ( ) ( )
'B B

T A=v v

◼ Ex 4: (Finding a matrix relative to nonstandard bases)

Let the L. T. T: R2 → R2 defined by
1 2 1 2 1 2( , ) ( , 2 )T x x x x x x= + −

Find the matrix of T relative to the basis

{(1, 2), ( 1  1)} and {(1, 0), (0, 1)}, 'B B= − =

Sol:

(1  2) (3, 0) 3 1, 0) 0(0, 1), ( 1  1) (0, 3 0(1, 0) 3(0, 1), ( , )T T= = + − = − = −
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The matrix of T relative to the bases B and B ':

   3 0
(1, 2) ,   ( 1, 1)

0 3' 'B B
T T   

= − =
−      

    3 0
(1, 2) ( 1, 1)

0 3' 'B B
A T T   = − =  −  

Sol:

◼ Ex 5:

For the L. T. T: R2 → R2 given in example 4, use the matrix A to find T(v), where v = 

(2, 1)

(2, 1) 1(1, 2) 1( 1, 1)= = − −v {(1, 2), ( 1, 1)}B = −

  1
1B

 
 =

−  
v
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    3 0 1 3
( )

0 3 1 3'B B
T A      

 = = =
− −          

v v

{(1, 0), (0, 1)}'B =

◼ Check:

( ) 3(1, 0) 3(0, 1) (3, 3)T = + =v

(2, 1) (2 1, 2(2) 1) (3, 3)T = + − =

◼ Notes:

(1) For the special case where V = W and B = B ′, the matrix A is called the matrix 

of T relative to the basis B

(2) If T: V → V is the identity transformation, then the matrix of T relative to the 

basis                                 is the identity matrix In{ , , , }B = nv v v
1 2
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6.4 Similarity of Matrices

For square matrices A and A ′ of order n, A ′ is said to be similar to A if there exist an 

invertible matrix P such that A ′ = P−1AP

Let A, B, and C be square matrices of order n. Then the following properties are true.

(1) A is similar to A.

(2) If A is similar to B, then B is similar to A.

(3) If A is similar to B and B is similar to C, then A is similar to C.

◼ Similar matrix

◼ Theorem 6.12: (Properties of similar matrices)
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◼ Ex 1: (Similar matrices)

2 2 3 2
( )   and    are  similar  

1 3 1 2
'a A A

− −   
= =   − −   

1 1 1
because  ,  where  

0 1
'A P AP P−  
= =  

 

2 7 2 1
( )   and    are  similar 

3 7 1 3
'b A A

−   
= =   − −   

1 3 2
because  ,  where  

2 1
'A P AP P− − 
= =  − 
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6.5 Applications of Linear Transformations

◼ The Geometry of Linear Transformations In R2

(a) Reflection in y-axis

T(x, y) = (−x, y)

x x
y y

− −     
=     

     

1 0
0 1

(b) Reflection in x-axis (c) Reflection in line y = x

x x
y y

     
=     − −     

1 0
0 1

x y
y x

     
=     

     

0 1
1 0

T(x, y) = (x, −y) T(x, y) = (y, x)
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(d) Horizontal expansions and contractions
k x kx

y y
     

=     
     

0
0 1

T(x, y) = (kx, y)
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(d) Vertical expansions and contractions
x x

k y ky
     

=     
     

1 0
0

T(x, y) = (x, ky)
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(e) Horizontal shear

k x x ky
y y

+     
=     

     

1
0 1

T(x, y) = (x + ky, y)

(f) Vertical shear

x x
k y kx y
     

=     +     

1 0
1

T(x, y) = (x, kx + y)

k = 2k = 2
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◼ Rotation In R3

cos sin cos sin

sin cos sin cos

x x x y
y y x y
z z z

   

   

 − −       
        = = +
       
       

0
0

0 0 1

Rotation about the z-axis
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/ /cos sin

sin cos / /A

 − −
  

= =   
     

1 2 3 2 060 60 0

60 60 0 3 2 1 2 0
0 0 1 0 0 1
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Rotation about the z-axis

cos sin
sin cos

 
 

− 
 
  

0
0

0 0 1

Rotation about the x-axis

cos sin
sin cos

 
 

 
 −
  

1 0 0
0
0

cos sin

sin cos

 

 

 
 
 − 

0
0 1 0

0

Rotation about the y-axis
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Rotation of 90° about the x-axis

A
 
 = −
 
 

1 0 0
0 0 1
0 1 0

A
 
 =
 
− 

0 0 1
0 1 0
1 0 0

Rotation of 90° about the y-axis
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