

CECC122: Linear Algebra and Matrix Theory Lecture Notes 10: Linear Transformations: Part B

Ramez Koudsieh, Ph.D.

Faculty of Engineering
Department of Informatics
Manara University

- 6.1 Introduction to Linear Transformations
- 6.2 The Kernel and Range of a Linear Transformation
- 6.3 Matrices for Linear Transformations
- 6.4 Similarity of Matrices
- 6.5 Applications of Linear Transformations

Linear Transformations https://manara.edu.sy/ 2023-2024 2/28

6.3 Matrices for Linear Transformations

• Two representations of the linear transformation $T: R^3 \rightarrow R^3$

(1)
$$T(x_1, x_2, x_3) = (2x_1 + x_2 - x_3, -x_1 + 3x_2 - 2x_3, 3x_2 + 4x_3)$$

(2)
$$T(\boldsymbol{x}) = A\boldsymbol{x} = \begin{bmatrix} 2 & 1 & -1 \\ -1 & 3 & -2 \\ 0 & 3 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

- Three reasons for matrix representation of a linear transformation:
 - It is simpler to write.
 - It is simpler to read.
 - It is more easily adapted for computer use.

Theorem 6.9: (Standard matrix for a linear transformation)

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation such that

$$T(\boldsymbol{e_1}) = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}, \quad T(\boldsymbol{e_2}) = \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix}, \dots, \quad T(\boldsymbol{e_n}) = \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix},$$

then the $m \times n$ matrix whose n columns correspond to $T(e_i)$

$$A = \begin{bmatrix} T(e_1) \mid T(e_2) \mid \cdots \mid T(e_n) \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

is such that T(v) = Av for every v in \mathbb{R}^n . A is called the standard matrix for T

Linear Transformations https://manara.edu.sy/ 2023-2024 4/28

• Ex 1: (Finding the standard matrix of a linear transformation)

Find the standard matrix for the L.T. $T: R^3 \to R^2$ defined by T(x,y,z) = (x-2y, 2x+y)Sol:

Vector Notation

$$T(e_1) = T(1, 0, 0) = (1, 2)$$

$$T(e_2) = T(0, 1, 0) = (-2, 1)$$

$$T(e_3) = T(0, 0, 1) = (0, 0)$$

Matrix Notation

$$T(e_1) = T(\begin{bmatrix} 1\\0\\0 \end{bmatrix}) = \begin{bmatrix} 1\\2 \end{bmatrix}$$

$$T(e_2) = T(\begin{bmatrix} 0\\1\\0 \end{bmatrix}) = \begin{bmatrix} -2\\1 \end{bmatrix}$$

$$T(e_3) = T(\begin{bmatrix} 0\\0\\1 \end{bmatrix}) = \begin{bmatrix} 0\\0 \end{bmatrix}$$

Check:

$$A \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 & -2 & 0 \\ 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x - 2y \\ 2x + y \end{bmatrix}$$
 i.e. $T(x, y, z) = (x - 2y, 2x + y)$

Notes:

- (1) The standard matrix for the zero transformation from R^n into R^m is the $m \times n$ zero matrix.
- (2) The standard matrix for the identity transformation from R^n into R^n is the $n \times n$ identity matrix I_n

Linear Transformations https://manara.edu.sy/ 2023-2024 6/28

• Composition of $T_1: \mathbb{R}^n \to \mathbb{R}^m$ with $T_2: \mathbb{R}^m \to \mathbb{R}^p$:

$$T(v) = T_2(T_1(v)), v \in \mathbb{R}^n$$

$$T=T_2\circ T_1,$$

domain of $T = \text{domain of } T_1$

• Note: $T_1 \circ T_2 \neq T_2 \circ T_1$

■ Theorem 6.10: (Composition of linear transformations)

Let $T_1: \mathbb{R}^n \to \mathbb{R}^m$ and $T_2: \mathbb{R}^m \to \mathbb{R}^p$ be L.T. with standard matrices A_1 and A_2 , then

- (1) The composition $T: \mathbb{R}^n \to \mathbb{R}^p$, defined by $T(v) = T_2(T_1(v))$, is a L. T.
- (2) The standard matrix A for T is given the matrix product $A = A_2A_1$

• Ex 2: (The standard matrix of a composition)

Let T_1 and T_2 be L. T. from R^3 into R^3 such that

$$T_1(x,y,z) = (2x + y, 0, x + z), \quad T_2(x,y,z) = (x - y, z, y)$$

Find the standard matrices for the compositions

$$T = T_2 \circ T_1$$
 and $T' = T_1 \circ T_2$

Sol:

$$A_{1} = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix}, \qquad A_{2} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

standard matrices for T_1

standard matrices for T_2

The standard matrix for $T = T_2 \circ T_1$

$$A = A_2 A_1 = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

The standard matrix for $T' = T_1 \circ T_2$

$$A' = A_1 A_2 = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & -2 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

Linear Transformations https://manara.edu.sy/ 2023-2024 9/28

• Inverse linear transformation:

If $T_1: \mathbb{R}^n \to \mathbb{R}^n$ and $T_2: \mathbb{R}^n \to \mathbb{R}^n$ are L.T. such that for every \boldsymbol{v} in \mathbb{R}^n $T_2(T_1(\boldsymbol{v})) = \boldsymbol{v}$ and $T_1(T_2(\boldsymbol{v})) = \boldsymbol{v}$

Then T_2 is called the inverse of T_1 and T_1 is said to be invertible

Note:

If the transformation T is invertible, then the inverse is unique and denoted by T^{-1} .

Linear Transformations https://manara.edu.sy/ 2023-2024 10/28

• Theorem 6.11: (Existence of an inverse transformation)

Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a L.T. with standard matrices, then the following conditions are equivalent

- (1) T is invertible.
- (2) A is invertible.

Note:

If T is invertible with standard matrix A, then the standard matrix for T^{-1} is A^{-1} .

Linear Transformations https://manara.edu.sy/ 2023-2024 11/28

• Ex 3: (Finding the inverse of a linear transformation)

The L. T. $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by

$$T(x_1, x_2, x_3) = (2x_1 + 3x_2 + x_3, 3x_1 + 3x_2 + x_3, 2x_1 + 4x_2 + x_3)$$

Show that T is invertible, and find its inverse.

Sol:

The standard matrix for T

$$A = \begin{bmatrix} 2 & 3 & 1 \\ 3 & 3 & 1 \\ 2 & 4 & 1 \end{bmatrix} \leftarrow 2x_1 + 3x_2 + x_3 \\ \leftarrow 3x_1 + 3x_2 + x_3 \\ \leftarrow 2x_1 + 4x_2 + x_3$$

$$\begin{bmatrix} A \mid I_3 \end{bmatrix} = \begin{bmatrix} 2 & 3 & 1 \mid 1 & 0 & 0 \\ 3 & 3 & 1 \mid 0 & 1 & 0 \\ 2 & 4 & 1 \mid 0 & 0 & 1 \end{bmatrix}$$

G.J. Elimination
$$\begin{bmatrix}
1 & 0 & 0 & | & -1 & 1 & 0 \\
0 & 1 & 0 & | & -1 & 0 & 1 \\
0 & 0 & 1 & | & 6 & -2 & -3
\end{bmatrix} = \begin{bmatrix} I & A^{-1} \end{bmatrix}$$

Therefore T is invertible and the standard matrix for T^{-1} is A^{-1} .

$$A^{-1} = \begin{bmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \\ 6 & -2 & -3 \end{bmatrix}$$

$$T^{-1}(\boldsymbol{v}) = A^{-1}\boldsymbol{v} = \begin{bmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \\ 6 & -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -x_1 + x_2 \\ -x_1 + x_3 \\ 6x_1 - 2x_2 - 3x_3 \end{bmatrix}$$

In other words $T^{-1}(x_1, x_2, x_3) = (-x_1 + x_2, -x_1 + x_3, 6x_1 - 2x_2 - 3x_3)$

Linear Transformations https://manara.edu.sy/ 2023-2024 13/28

• The matrix of T relative to the bases B and B ':

 $T: V \rightarrow W$ a linear transformation

$$B = \{v_1, v_2, \dots, v_n\}$$
 a basis for V

$$B' = \{ \boldsymbol{w_1}, \boldsymbol{w_2}, \dots, \boldsymbol{w_m} \}$$
 a basis for W

Thus, the matrix of T relative to the bases B and B ' is

$$A = \left[\left[T(\boldsymbol{v_1}) \right]_{B'} \middle| \left[T(\boldsymbol{v_2}) \right]_{B'} \middle| \cdots \middle| \left[T(\boldsymbol{v_n}) \right]_{B'} \right] \in M_{m \times n}$$

Linear Transformations https://manara.edu.sy/ 2023-2024 14/28

Transformation matrix for nonstandard bases:

Let V and W be finite-dimensional vector spaces with basis B and B 'respectively, where

$$B = \{\boldsymbol{v_1}, \boldsymbol{v_2}, \cdots, \boldsymbol{v_n}\}$$

If $T: V \to W$ a linear transformation such that

$$\begin{bmatrix} T(\boldsymbol{v_1}) \end{bmatrix}_{B'} = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}, \quad \begin{bmatrix} T(\boldsymbol{v_2}) \end{bmatrix}_{B'} = \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix}, \cdots, \begin{bmatrix} T(\boldsymbol{v_n}) \end{bmatrix}_{B'} = \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}$$

Then the $m \times n$ matrix whose n columns correspond to $[T(v_i)]_{B'}$

Linear Transformations https://manara.edu.sy/ 2023-2024 15/28

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

is such that $[T(v)]_{B'} = A[(v)]_{B}$ for every v in V

Ex 4: (Finding a matrix relative to nonstandard bases)

Let the L. T. $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(x_1, x_2) = (x_1 + x_2, 2x_1 - x_2)$

Find the matrix of T relative to the basis

$$B = \{(1, 2), (-1, 1)\} \text{ and } B' = \{(1, 0), (0, 1)\}$$

Sol:

$$T(1, 2) = (3, 0) = 3(1, 0) + 0(0, 1), T(-1, 1) = (0, -3) = 0(1, 0) - 3(0, 1)$$

Linear Transformations https://manara.edu.sy/ 2023-2024 16/28

$$\begin{bmatrix} T(1, 2) \end{bmatrix}_{B'} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}, \quad \begin{bmatrix} T(-1, 1) \end{bmatrix}_{B'} = \begin{bmatrix} 0 \\ -3 \end{bmatrix}$$

The matrix of T relative to the bases B and B ':

$$A = \left[\left[T(1, 2) \right]_{B'} \quad \left[T(-1, 1) \right]_{B'} \right] = \begin{bmatrix} 3 & 0 \\ 0 & -3 \end{bmatrix}$$

• Ex 5:

For the L. T. $T: \mathbb{R}^2 \to \mathbb{R}^2$ given in example 4, use the matrix A to find T(v), where v = (2, 1)

Sol:

$$v = (2, 1) = 1(1, 2) - 1(-1, 1)$$

$$\Rightarrow [v]_{B} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} T(\boldsymbol{v}) \end{bmatrix}_{B'} = A \begin{bmatrix} \boldsymbol{v} \end{bmatrix}_{B} = \begin{bmatrix} 3 & 0 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$

$$\Rightarrow T(v) = 3(1, 0) + 3(0, 1) = (3, 3)$$

$$B' = \{(1, 0), (0, 1)\}$$

Check:

$$T(2, 1) = (2 + 1, 2(2) - 1) = (3, 3)$$

- Notes:
 - (1) For the special case where V = W and B = B', the matrix A is called the matrix of T relative to the basis B
 - (2) If $T: V \to V$ is the identity transformation, then the matrix of T relative to the basis $B = \{v_1, v_2, \dots, v_n\}$ is the identity matrix I_n

6.4 Similarity of Matrices

Similar matrix

For square matrices A and A' of order n, A' is said to be similar to A if there exist an invertible matrix P such that $A' = P^{-1}AP$

Theorem 6.12: (Properties of similar matrices)

Let A, B, and C be square matrices of order n. Then the following properties are true.

- (1) A is similar to A.
- (2) If A is similar to B, then B is similar to A.
- (3) If A is similar to B and B is similar to C, then A is similar to C.

Linear Transformations https://manara.edu.sy/ 2023-2024 19/28

• Ex 1: (Similar matrices)

(a)
$$A = \begin{bmatrix} 2 & -2 \\ -1 & 3 \end{bmatrix}$$
 and $A' = \begin{bmatrix} 3 & -2 \\ -1 & 2 \end{bmatrix}$ are similar

because
$$A' = P^{-1}AP$$
, where $P = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$

(b)
$$A = \begin{bmatrix} -2 & 7 \\ -3 & 7 \end{bmatrix}$$
 and $A' = \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix}$ are similar

because
$$A' = P^{-1}AP$$
, where $P = \begin{bmatrix} 3 & -2 \\ 2 & -1 \end{bmatrix}$

6.5 Applications of Linear Transformations

- The Geometry of Linear Transformations In \mathbb{R}^2

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -x \\ y \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ -y \end{bmatrix}$$

(a) Reflection in y-axis (b) Reflection in x-axis

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ -y \end{bmatrix}$$

$$T(x, y) = (x, -y)$$

(c) Reflection in line y = x

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} y \\ x \end{bmatrix}$$

$$T(x, y) = (y, x)$$

(d) Horizontal expansions and contractions T(x, y) = (kx, y)

$$\begin{bmatrix} k & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} kx \\ y \end{bmatrix}$$

(d) Vertical expansions and contractions $\begin{bmatrix} 1 & 0 \\ 0 & k \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ ky \end{bmatrix}$ T(x, y) = (x, ky)

$$\begin{bmatrix} 1 & 0 \\ 0 & k \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ ky \end{bmatrix}$$

(e) Horizontal shear

$$\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x + ky \\ y \end{bmatrix}$$

$$k = 2$$

$$4 - (x, y) \quad (x + 2y, y)$$

$$3 - (x + 2y, y)$$

$$-4 - 3 - 2$$

$$1 - 2 - 3 - 4$$

$$T(x, y) = (x + ky, y)$$

(f) Vertical shear

$$\begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ kx + y \end{bmatrix}$$

• Rotation In R^3

Rotation about the z-axis

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \cos \theta - y \sin \theta \\ x \sin \theta + y \cos \theta \\ z \end{bmatrix}$$

$$A = \begin{bmatrix} \cos 60^{\circ} & -\sin 60^{\circ} & 0 \\ \sin 60^{\circ} & \cos 60^{\circ} & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1/2 & -\sqrt{3}/2 & 0 \\ \sqrt{3}/2 & 1/2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Rotation about the x-axis

Rotation about the y-axis

Rotation about the z-axis

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}$$

$$\begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$$

$$\begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Rotation about *y*-axis

Rotation about *z*-axis

Rotation of 90° about the x-axis

Rotation of 90° about the y-axis

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$A = \begin{vmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{vmatrix}$$