QBCCI22: Linear Algebra and Natrix Theory

Lecture Notes 10: linear Transormations: Part B

Ramez Koudsieh, Ph.D.
Faculty of Engineering
Department of Informatics Manara University
6.3 Matrices for Linear Transformations
6.4 Similarity of Matrices
6.5 Applications of Linear Transformations

6.3 Matrices for Linear Transformations

- Two representations of the linear transformation $T: R^{3} \rightarrow R^{3}$
(1) $T\left(x_{1}, x_{2}, x_{3}\right)=\left(2 x_{1}+x_{2}-x_{3},-x_{1}+3 x_{2}-2 x_{3}, 3 x_{2}+4 x_{3}\right)$
(2) $T(\boldsymbol{x})=A \boldsymbol{x}=\left[\begin{array}{rrr}2 & 1 & -1 \\ -1 & 3 & -2 \\ 0 & 3 & 4\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$
- Three reasons for matrix representation of a linear transformation:
- It is simpler to write.
- It is simpler to read.
- It is more easily adapted for computer use.
- Theorem 6.9: (Standard matrix for a linear transformation)

Let $T: R^{n} \rightarrow R^{m}$ be a linear transformation such that

$$
T\left(e_{\mathbf{1}}\right)=\left[\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{m 1}
\end{array}\right], \quad T\left(e_{2}\right)=\left[\begin{array}{c}
a_{12} \\
a_{22} \\
\vdots \\
a_{m 2}
\end{array}\right], \cdots, \quad T\left(e_{n}\right)=\left[\begin{array}{c}
a_{1 n} \\
a_{2 n} \\
\vdots \\
a_{m n}
\end{array}\right],
$$

then the $m \mathrm{x} n$ matrix whose n columns correspond to $T\left(e_{i}\right)$

$$
A=\left[T\left(\boldsymbol{e}_{\mathbf{1}}\right)\left|T\left(\boldsymbol{e}_{\mathbf{2}}\right)\right| \cdots \mid T\left(\boldsymbol{e}_{n}\right)\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]
$$

is such that $T(\boldsymbol{v})=A \boldsymbol{v}$ for every \boldsymbol{v} in $R^{n} . A$ is called the standard matrix for T

- Ex 1: (Finding the standard matrix of a linear transformation)

Find the standard matrix for the L.T. $T: R^{3} \rightarrow R^{2}$ defined by $T(x, y, z)=(x-2 y, 2 x+y)$ Sol:

Vector Notation

$$
T\left(e_{1}\right)=T(1,0,0)=(1,2)
$$

$$
T\left(e_{2}\right)=T(0,1,0)=(-2,1)
$$

$$
T\left(e_{3}\right)=T(0,0,1)=(0,0)
$$

Matrix Notation

$$
T\left(e_{1}\right)=T\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

$$
T\left(e_{2}\right)=T\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

$$
T\left(e_{3}\right)=T\left(\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

$$
A=\left[T\left(e_{1}\right)\left|T\left(e_{2}\right)\right| T\left(e_{3}\right)\right]=\left[\begin{array}{ccc}
1 & -2 & 0 \\
2 & 1 & 0
\end{array}\right]
$$

- Check:

$$
A\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{ccc}
1 & -2 & 0 \\
2 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
x-2 y \\
2 x+y
\end{array}\right] \quad \text { i.e. } T(x, y, z)=(x-2 y, 2 x+y)
$$

- Notes:
(1) The standard matrix for the zero transformation from R^{n} into R^{m} is the $m \times n$ zero matrix.
(2) The standard matrix for the identity transformation from R^{n} into R^{n} is the $n \times n$ identity matrix I_{n}

جَـامعة
الـَمَـنارة

- Composition of $T_{1}: R^{n} \rightarrow R^{m}$ with $T_{2}: R^{m} \rightarrow R^{p}$:
$T(\boldsymbol{v})=T_{2}\left(T_{1}(\boldsymbol{v})\right), \quad \boldsymbol{v} \in R^{n}$
$T=T_{2} \circ T_{1}$,
domain of $T=$ domain of T_{1}
- Note: $T_{1} \circ T_{2} \neq T_{2} \circ T_{1}$

- Theorem 6.10: (Composition of linear transformations)

Let $T_{1}: R^{n} \rightarrow R^{m}$ and $T_{2}: R^{m} \rightarrow R^{p}$ be L.T. with standard matrices A_{1} and A_{2}, then
(1) The composition $T: R^{n} \rightarrow R^{p}$, defined by $T(v)=T_{2}\left(T_{1}(v)\right)$, is a L. T.
(2) The standard matrix A for T is given the matrix product $A=A_{2} A_{1}$

- Ex 2: (The standard matrix of a composition)

Let T_{1} and T_{2} be L. T. from R^{3} into R^{3} such that

$$
T_{1}(x, y, z)=(2 x+y, 0, x+z), \quad T_{2}(x, y, z)=(x-y, z, y)
$$

Find the standard matrices for the compositions

$$
T=T_{2} \circ T_{1} \text { and } T^{\prime}=T_{1} \circ T_{2}
$$

Sol:

$$
A_{1}=\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 0 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

$$
A_{2}=\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

standard matrices for T_{1} standard matrices for T_{2}

The standard matrix for $T=T_{2} \circ T_{1}$
$A=A_{2} A_{1}=\left[\begin{array}{ccc}1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{lll}2 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}2 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$
The standard matrix for $T^{\prime}=T_{1} \circ T_{2}$

$$
A^{\prime}=A_{1} A_{2}=\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 0 & 0 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{ccc}
2 & -2 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

- Inverse linear transformation:

If $T_{1}: R^{n} \rightarrow R^{n}$ and $T_{2}: R^{n} \rightarrow R^{n}$ are L.T. such that for every \boldsymbol{v} in R^{n}

$$
T_{2}\left(T_{1}(\boldsymbol{v})\right)=\boldsymbol{v} \quad \text { and } \quad T_{1}\left(T_{2}(\boldsymbol{v})\right)=\boldsymbol{v}
$$

Then T_{2} is called the inverse of T_{1} and T_{1} is said to be invertible

- Note:

If the transformation T is invertible, then the inverse is unique and denoted by T^{-1}.

- Theorem 6.11: (Existence of an inverse transformation)

Let $T: R^{n} \rightarrow R^{n}$ be a L.T. with standard matrices, then the following conditions are equivalent
(1) T is invertible.
(2) A is invertible.

- Note:

If T is invertible with standard matrix A, then the standard matrix for T^{-1} is A^{-1}.

- Ex 3: (Finding the inverse of a linear transformation)

The L. T. T: $R^{3} \rightarrow R^{3}$ defined by

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(2 x_{1}+3 x_{2}+x_{3}, 3 x_{1}+3 x_{2}+x_{3}, 2 x_{1}+4 x_{2}+x_{3}\right)
$$

Show that T is invertible, and find its inverse.
Sol:
The standard matrix for T

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
2 & 3 & 1 \\
3 & 3 & 1 \\
2 & 4 & 1
\end{array}\right] \begin{array}{l}
\leftarrow 2 x_{1}+3 x_{2}+x_{3} \\
\leftarrow 3 x_{1}+3 x_{2}+x_{3} \\
\leftarrow 2 x_{1}+4 x_{2}+x_{3}
\end{array} \\
& {\left[A \mid I_{3}\right]=\left[\begin{array}{lll|lll}
2 & 3 & 1 & 1 & 0 & 0 \\
3 & 3 & 1 & 0 & 1 & 0 \\
2 & 4 & 1 & 0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

$\xrightarrow{\text { G.J. Elimination }}\left[\begin{array}{ccc|ccc}1 & 0 & 0 & -1 & 1 & 0 \\ 0 & 1 & 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & 6 & -2 & -3\end{array}\right]=\left[I \mid A^{-1}\right]$
Therefore T is invertible and the standard matrix for T^{-1} is A^{-1}.

$$
\begin{gathered}
A^{-1}=\left[\begin{array}{ccc}
-1 & 1 & 0 \\
-1 & 0 & 1 \\
6 & -2 & -3
\end{array}\right] \\
T^{-1}(\boldsymbol{v})=A^{-1} \boldsymbol{v}=\left[\begin{array}{ccc}
-1 & 1 & 0 \\
-1 & 0 & 1 \\
6 & -2 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-x_{1}+x_{2} \\
-x_{1}+x_{3} \\
6 x_{1}-2 x_{2}-3 x_{3}
\end{array}\right]
\end{gathered}
$$

In other words $T^{-1}\left(x_{1}, x_{2}, x_{3}\right)=\left(-x_{1}+x_{2},-x_{1}+x_{3}, 6 x_{1}-2 x_{2}-3 x_{3}\right)$

- The matrix of T relative to the bases B and B^{\prime} :
$T: V \rightarrow W$ a linear transformation

$$
\begin{array}{ll}
B=\left\{\boldsymbol{v}_{1}, v_{2}, \cdots, \boldsymbol{v}_{n}\right\} & \text { a basis for } V \\
B^{\prime}=\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \cdots, \boldsymbol{w}_{m}\right\} \quad \text { a basis for } W
\end{array}
$$

Thus, the matrix of T relative to the bases B and B^{\prime} is

$$
A=\left[\left[T\left(\boldsymbol{v}_{\mathbf{1}}\right)\right]_{B^{\prime}}\left|\left[T\left(\boldsymbol{v}_{\mathbf{2}}\right)\right]_{B^{\prime}}\right| \cdots \mid\left[T\left(\boldsymbol{v}_{n}\right)\right]_{B^{\prime}}\right] \in M_{m \times n}
$$

- Transformation matrix for nonstandard bases:

Let V and W be finite-dimensional vector spaces with basis B and B ' respectively, where

$$
B=\left\{\boldsymbol{v}_{1}, v_{2}, \cdots, v_{n}\right\}
$$

If $T: V \rightarrow W$ a linear transformation such that

$$
\left[T\left(\boldsymbol{v}_{\mathbf{1}}\right)\right]_{B^{\prime}}=\left[\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{m 1}
\end{array}\right], \quad\left[T\left(\boldsymbol{v}_{\mathbf{2}}\right)\right]_{B^{\prime}}=\left[\begin{array}{c}
a_{12} \\
a_{22} \\
\vdots \\
a_{m 2}
\end{array}\right], \cdots,\left[T\left(\boldsymbol{v}_{\boldsymbol{n}}\right)\right]_{B^{\prime}}=\left[\begin{array}{c}
a_{1 n} \\
a_{2 n} \\
\vdots \\
a_{m n}
\end{array}\right]
$$

Then the $m \mathrm{x} n$ matrix whose n columns correspond to $\left[T\left(\boldsymbol{v}_{i}\right)\right]_{B^{\prime}}$

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]
$$

is such that $[T(\boldsymbol{v})]_{B^{\prime}}=A[(\boldsymbol{v})]_{B}$ for every \boldsymbol{v} in V

- Ex 4: (Finding a matrix relative to nonstandard bases)

Let the L. T. $T: R^{2} \rightarrow R^{2}$ defined by $T\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}, 2 x_{1}-x_{2}\right)$
Find the matrix of T relative to the basis

$$
B=\{(1,2),(-1,1)\} \text { and } B^{\prime}=\{(1,0),(0,1)\}
$$

Sol:

$$
T(1,2)=(3,0)=3(1,0)+0(0,1), T(-1,1)=(0,-3)=0(1,0)-3(0,1)
$$

$$
[T(1,2)]_{B^{\prime}}=\left[\begin{array}{l}
3 \\
0
\end{array}\right], \quad[T(-1,1)]_{B^{\prime}}=\left[\begin{array}{c}
0 \\
-3
\end{array}\right]
$$

The matrix of T relative to the bases B and B^{\prime} :

$$
A=\left[[T(1,2)]_{B^{\prime}}[T(-1,1)]_{B^{\prime}}\right]=\left[\begin{array}{cc}
3 & 0 \\
0 & -3
\end{array}\right]
$$

- Ex 5:

For the L. T. $T: R^{2} \rightarrow R^{2}$ given in example 4, use the matrix A to find $T(v)$, where $\boldsymbol{v}=$ $(2,1)$
Sol:

$$
\begin{array}{cl}
\boldsymbol{v}=(2,1)=1(1,2)-1(-1,1) & B=\{(1,2),(-1,1)\} \\
& \Rightarrow[\boldsymbol{v}]_{B}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
\end{array}
$$

$$
\begin{array}{ll}
\Rightarrow[T(\boldsymbol{v})]_{B^{\prime}}=A[\boldsymbol{v}]_{B}=\left[\begin{array}{cc}
3 & 0 \\
0 & -3
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\left[\begin{array}{l}
3 \\
3
\end{array}\right] & \\
\Rightarrow T(\boldsymbol{v})=3(1,0)+3(0,1)=(3,3) & B^{\prime}=\{(1,0),(0,1)\}
\end{array}
$$

- Check:

$$
T(2,1)=(2+1,2(2)-1)=(3,3)
$$

- Notes:
(1) For the special case where $V=W$ and $B=B^{\prime}$, the matrix A is called the matrix of T relative to the basis B
(2) If $T: V \rightarrow V$ is the identity transformation, then the matrix of T relative to the basis $B=\left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}, \cdots, \boldsymbol{v}_{n}\right\}$ is the identity matrix I_{n}

6.4 Similarity of Matrices

- Similar matrix

For square matrices A and A^{\prime} of order n, A^{\prime} is said to be similar to A if there exist an invertible matrix P such that $A^{\prime}=P^{-1} A P$

- Theorem 6.12: (Properties of similar matrices)

Let A, B, and C be square matrices of order n. Then the following properties are true.
(1) A is similar to A.
(2) If A is similar to B, then B is similar to A.
(3) If A is similar to B and B is similar to C, then A is similar to C.

- Ex 1: (Similar matrices)
(a) $A=\left[\begin{array}{cc}2 & -2 \\ -1 & 3\end{array}\right]$ and $A^{\prime}=\left[\begin{array}{cc}3 & -2 \\ -1 & 2\end{array}\right]$ are similar
because $A^{\prime}=P^{-1} A P$, where $P=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$
(b) $A=\left[\begin{array}{ll}-2 & 7 \\ -3 & 7\end{array}\right]$ and $A^{\prime}=\left[\begin{array}{cc}2 & 1 \\ -1 & 3\end{array}\right]$ are similar
because $A^{\prime}=P^{-1} A P$, where $P=\left[\begin{array}{ll}3 & -2 \\ 2 & -1\end{array}\right]$

6.5 Applications of Linear Transformations

- The Geometry of Linear Transformations In R^{2}
(a) Reflection in y-axis $\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}-x \\ y\end{array}\right]$

$$
T(x, y)=(-x, y)
$$

(b) Reflection in x-axis
$\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}x \\ -y\end{array}\right]$

$$
T(x, y)=(x,-y)
$$

(c) Reflection in line $y=x$

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
y \\
x
\end{array}\right]
$$

$T(x, y)=(y, x)$
$\begin{aligned} & \text { (d) Horizontal expansions and contractions } \\ & T(x, y)=(k x, y)\end{aligned}\left[\begin{array}{ll}k & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}k x \\ y\end{array}\right]$ $T(x, y)=(k x, y)$

Contraction $(0<k<1)$

Expansion $(k>1)$
(d) Vertical expansions and contractions $\left[\begin{array}{ll}1 & 0 \\ 0 & k\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}x \\ k y\end{array}\right]$

$$
T(x, y)=(x, k y)
$$

Contraction $(0<k<1)$

Expansion $(k>1)$
(e) Horizontal shear

$$
\left[\begin{array}{ll}
1 & k \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x+k y \\
y
\end{array}\right]
$$

(f) Vertical shear

$$
\left[\begin{array}{ll}
1 & 0 \\
k & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x \\
k x+y
\end{array}\right]
$$

- Rotation In R^{3}

Rotation about the z-axis

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
x \cos \theta-y \sin \theta \\
x \sin \theta+y \cos \theta \\
z
\end{array}\right]
$$

حَــامعة
الـمَـنارة

$$
A=\left[\begin{array}{ccc}
\cos 60^{\circ} & -\sin 60^{\circ} & 0 \\
\sin 60^{\circ} & \cos 60^{\circ} & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 / 2 & -\sqrt{3} / 2 & 0 \\
\sqrt{3} / 2 & 1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Rotation about the x-axis

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right]
$$

Rotation about x-axis

Rotation about the y-axis
$\left[\begin{array}{ccc}\cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta\end{array}\right]$

Rotation about the z-axis

Rotation about y-axis

Rotation about z-axis

Rotation of 90° about the x -axis

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right]
$$

Rotation of 90° about the y-axis

$$
A=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
-1 & 0 & 0
\end{array}\right]
$$

