

CECC122: Linear Algebra and Matrix Theory

Lecture Notes 12: Eigenvalues and Eigenvectors: Part B

Ramez Koudsieh, Ph.D.

Faculty of Engineering
Department of Informatics
Manara University

- 7.1 Eigenvalues and Eigenvectors
- 7.2 Diagonalization
- 7.3 Symmetric Matrices and Orthogonal Diagonalization
- 7.4 Applications of Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors https://manara.edu.sy/ 2023-2024 2/21

7.3 Symmetric Matrices and Orthogonal Diagonalization

Symmetric matrix:

A square matrix A is symmetric if it is equal to its transpose: $A = A^T$

Ex 1: (Symmetric matrices and nonsymetric matrices)

$$A = \begin{vmatrix} 0 & 1 & -2 \\ 1 & 3 & 0 \\ -2 & 0 & 5 \end{vmatrix}$$

$$B = \begin{bmatrix} 4 & 3 \\ 3 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 3 & 2 & 1 \\ 1 & -4 & 0 \\ 1 & 0 & 5 \end{bmatrix}$$

(nonsymmetric)

Eigenvalues and Eigenvectors https://manara.edu.sy/ 2023-2024 3/21

Theorem 7.6: (Eigenvalues of symmetric matrices)

If A is an $n \times n$ symmetric matrix, then the following properties are true.

- (1) A is diagonalizable.
- (2) All eigenvalues of A are real.
- (3) If λ is an eigenvalue of A with multiplicity k, then λ has k linearly independent eigenvectors.

Eigenvalues and Eigenvectors https://manara.edu.sy/ 2023-2024 4/21

Orthogonal matrix:

A square matrix P is called orthogonal if it is invertible and $P^{-1} = P^{T}$

Ex 2: (Orthogonal matrices)

(a)
$$P = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
 is orthogonal because $P^{-1} = P^{T} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$

(b)
$$P = \begin{bmatrix} \frac{3}{5} & 0 & \frac{-4}{5} \\ 0 & 1 & 0 \\ \frac{4}{5} & 0 & \frac{3}{5} \end{bmatrix}$$
 is orthogonal because $P^{-1} = P^{T} = \begin{bmatrix} \frac{3}{5} & 0 & \frac{4}{5} \\ 0 & 1 & 0 \\ \frac{-4}{5} & 0 & \frac{3}{5} \end{bmatrix}$

Theorem 7.7: (Properties of orthogonal matrices)

An $n \times n$ matrix P is orthogonal if and only if its column vectors form an orthonormal set.

• Ex 3: (An orthogonal matrix)

$$P = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}} & 0 \\ \frac{-2}{3\sqrt{5}} & \frac{-4}{3\sqrt{5}} & \frac{5}{3\sqrt{5}} \end{bmatrix}$$

Sol:

If P is a orthogonal matrix, then $P^{-1} = P^T \Rightarrow PP^T = I$

Eigenvalues and Eigenvectors https://manara.edu.sy/ 2023-2024 6/21

$$PP^{T} = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}} & 0 \\ \frac{-2}{3\sqrt{5}} & \frac{-4}{3\sqrt{5}} & \frac{5}{3\sqrt{5}} \end{bmatrix} \begin{bmatrix} \frac{1}{3} & \frac{-2}{\sqrt{5}} & \frac{-2}{3\sqrt{5}} \\ \frac{2}{3} & \frac{1}{\sqrt{5}} & \frac{-4}{3\sqrt{5}} \\ \frac{2}{3} & 0 & \frac{5}{3\sqrt{5}} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I$$

Let
$$p_1 = \begin{vmatrix} \frac{1}{3} \\ \frac{-2}{\sqrt{5}} \\ \frac{-2}{3\sqrt{5}} \end{vmatrix}$$
, $p_2 = \begin{vmatrix} \frac{2}{3} \\ \frac{1}{\sqrt{5}} \\ \frac{-4}{3\sqrt{5}} \end{vmatrix}$, $p_3 = \begin{bmatrix} \frac{2}{3} \\ 0 \\ \frac{5}{3\sqrt{5}} \end{bmatrix}$

$$||p_1 \cdot p_2| = |p_1 \cdot p_3| = |p_2 \cdot p_3| = 0$$

$$||p_1|| = ||p_2|| = ||p_3|| = 1$$

 $\{p_1, p_2, p_3\}$ is an orthonormal set

Theorem 7.8: (Properties of symmetric matrices)

Let A be an $n \times n$ symmetric matrix. If λ_1 and λ_2 are distinct eigenvalues of A, then their corresponding eigenvectors \mathbf{x}_1 and \mathbf{x}_2 are orthogonal.

• Ex 4: (Eigenvectors of a symmetric matrix)

Show that any two eigenvectors of
$$A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$$

corresponding to distinct eigenvalues are orthogonal

Sol: Characteristic equation:

$$\left|\lambda I - A\right| = \begin{vmatrix} \lambda - 3 & -1 \\ -1 & \lambda - 3 \end{vmatrix} = \lambda^2 - 6\lambda + 8 = (\lambda - 2)(\lambda - 4) = 0$$

 \Rightarrow Eigenvalues: $\lambda_1 = 2$, $\lambda_2 = 4$

Eigenvalues and Eigenvectors https://manara.edu.sy/ 2023-2024 8/21

- Orthogonal Diagonalization
 - matrix A is orthogonally diagonalizable when there exists an orthogonal matrix P such that $P^{-1}AP = D$ is diagonal
- Theorem 7.9: (Fundamental theorem of symmetric matrices)
 Let A be an $n \times n$ matrix. Then A is orthogonally diagonalizable and has real eigenvalue if and only if A is symmetric.

Eigenvalues and Eigenvectors https://manara.edu.sy/ 2023-2024 9/21

• Ex 5: (Determining whether a matrix is orthogonally diagonalizable)

		$\lceil 1 \rceil$	1	1	
$A_{\scriptscriptstyle 1}$	=	1 1	0	1	
_		1	1	1	
		_		_	,
		Γ	4	a	1

$$A_2 = \begin{bmatrix} 5 & 2 & 1 \\ 2 & 1 & 8 \\ -1 & 8 & 0 \end{bmatrix}$$

$$A_3 = \begin{bmatrix} 3 & 2 & 0 \\ 2 & 0 & 1 \end{bmatrix}$$

$$A_4 = \begin{bmatrix} 0 & 0 \\ 0 & -2 \end{bmatrix}$$

matrix

$$\bigcirc$$

Symmetric Orthogonally diagonalizable

- Orthogonal diagonalization of a symmetric matrix:
 - Let A be an $n \times n$ symmetric matrix.
 - (1) Find all eigenvalues of A and determine the multiplicity of each.
 - (2) For each eigenvalue of multiplicity 1, choose a unit eigenvector.
 - (3) For each eigenvalue of multiplicity $k \ge 2$, find a set of k linearly independent eigenvectors. If this set is not orthonormal, apply Gram-Schmidt orthonormalization process.
 - (4) The composite of steps 2 and 3 produces an orthonormal set of n eigenvectors. Use these eigenvectors to form the columns of P. The matrix $P^{-1}AP = P^{T}AP = D$ will be diagonal.

Eigenvalues and Eigenvectors https://manara.edu.sy/ 2023-2024 11/21

• Ex 6: (Orthogonal diagonalization)

Find a matrix P that orthogonally diagonalizes $A = \begin{bmatrix} 2 & 2 & -2 \\ 2 & -1 & 4 \\ -2 & 4 & -1 \end{bmatrix}$ Sol: Characteristic equation:

(1)
$$|\lambda I - A| = (\lambda - 3)^2 (\lambda + 6) = 0$$

Eigenvalues: $\lambda_1 = -6$, $\lambda_2 = 3$ (has a multiplicity of 2)

(2)
$$\lambda_1 = -6$$
, $v_1 = (1, -2, 2) \Rightarrow u_1 = \frac{v_1}{\|v_1\|} = (\frac{1}{3}, -\frac{2}{3}, \frac{2}{3})$

(3)
$$\lambda_2 = 3$$
, $v_2 = (2, 1, 0)$, $v_3 = (-2, 0, 1)$

Linear Independent

Gram-Schmidt Process:

$$w_2 = v_2 = (2, 1, 0), \ w_3 = v_3 - \frac{v_3 \cdot w_2}{w_2 \cdot w_2} w_2 = (-\frac{2}{5}, \frac{4}{3}, 1)$$

$$u_2 = \frac{w_2}{\|w_2\|} = (\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}, 0), \quad u_3 = \frac{w_3}{\|w_3\|} = (-\frac{2}{3\sqrt{5}}, \frac{4}{3\sqrt{5}}, \frac{5}{3\sqrt{5}})$$

$$(4) P = \begin{bmatrix} p_1 & p_2 & p_3 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & \frac{2}{\sqrt{5}} & \frac{-2}{3\sqrt{5}} \\ \frac{-2}{3} & \frac{1}{\sqrt{5}} & \frac{4}{3\sqrt{5}} \\ \frac{2}{3} & 0 & \frac{5}{3\sqrt{5}} \end{bmatrix} \Rightarrow P^{-1}AP = P^TAP = \begin{bmatrix} -6 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

Eigenvalues and Eigenvectors https://manara.edu.sy/ 2023-2024 13/21

7.4 Applications of Eigenvalues and Eigenvectors

Systems of Linear Differential Equations (Calculus)

$$oldsymbol{y'} = A oldsymbol{y}$$
 $oldsymbol{y'} = \begin{bmatrix} y_1' \\ y_2' \\ \vdots \\ y_n' \end{bmatrix}, \quad oldsymbol{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, \quad A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \quad oldsymbol{y'} = rac{dy_i}{dt}$

Ex 1: (Solving a System of Linear Differential Equations)

Solve the system of linear differential equations $y'_1 = 4y_1$

$$y_1 - 4y_1$$

 $y_2' = -y_2$
 $y_2' = 2y_2$

Sol:

$$y_1 = C_1 e^{4t}$$

 $y_2 = C_2 e^{-t}$
 $y_3 = C_3 e^{2t}$

$$y_3' = 2y_3$$

Notes:

(1) The matrix form of the system of linear differential equations is

$$\mathbf{y'} = A\mathbf{y}$$

$$\mathbf{y'} = \begin{bmatrix} 4 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

So, the coefficients of t in the solutions $y_i = C_i e^{\lambda_i t}$ are the eigenvalues of the matrix A (Diagonal).

(2) If A is not diagonal, find a matrix P that diagonalizes A.

Change of variables y = Pw and y' = Pw' produces:

 $Pw' = y' = Ay = APw \Rightarrow w' = P^{-1}APw$, where $P^{-1}AP$ is a diagonal matrix

• Ex 2: (Solving a System of Linear Differential Equations)

Solve the system of linear differential equations $y_1' = 3y_1 + 2y_2$

$$y_1' = 3y_1 + 2y_2$$

 $y_2' = 6y_1 - y_2$

Sol:

$$A = \begin{bmatrix} 3 & 2 \\ 6 & -1 \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 2 \\ 6 & -1 \end{bmatrix}$$
 Eigenvalues: -3, 5 Eigenvectors: $\begin{bmatrix} 1 \\ -3 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$

$$P = \begin{bmatrix} 1 & 1 \\ -3 & 1 \end{bmatrix}, \quad P^{-1} = \begin{bmatrix} 1/4 & -1/4 \\ 3/4 & 1/4 \end{bmatrix}, \quad P^{-1}AP = \begin{bmatrix} -3 & 0 \\ 0 & 5 \end{bmatrix}$$

$$\mathbf{w}' = P^{-1}AP\mathbf{w}: \begin{bmatrix} w_1' \\ w_2' \end{bmatrix} = \begin{bmatrix} -3 & 0 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \Rightarrow \begin{cases} w_1' \\ w_2' \\ = \end{cases} = \begin{cases} -3w_1 \\ 5w_2 \end{cases} \Rightarrow \begin{cases} w_1 \\ w_2 \\ = \end{cases} = \begin{cases} C_1e^{-3t} \\ C_2e^{5t} \end{cases}$$

$$\mathbf{y} = P\mathbf{w}: \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \Rightarrow \begin{cases} y_1 & = w_1 + w_2 & = C_1 e^{-3t} + C_2 e^{5t} \\ y_2 & = -3w_1 + w_2 & = -3C_1 e^{-3t} + C_2 e^{5t} \end{cases}$$

16/21 **Eigenvalues and Eigenvectors** 2023-2024 https://manara.edu.sy/

Quadratic Forms

$$ax^2 + bxy + cy^2 + dx + ey + f = 0$$
 Quadratic equation performing a rotation of axes that eliminates the xy -term $a'(x')^2 + c'(y')^2 + d'x' + e'y' + f' = 0$ a' and c' are eigenvalues of the matrix: $A = \begin{bmatrix} a & b/2 \\ b/2 & c \end{bmatrix}$

$$ax^2 + bxy + cy^2$$

Quadratic form

A is the matrix of the quadratic form

Notes:

- (1) The matrix A is symmetric
- (2) A is diagonal iff its corresponding quadratic form has no xy-term

• Ex 3: (Finding the Matrix of the Quadratic Form)

Find the matrix of the quadratic form associated with each quadratic equation:

(a)
$$4x^2 + 9y^2 - 36 = 0$$
 (b) $13x^2 - 10xy + 13y^2 - 72 = 0$

Sol:

(a) a = 4, b = 0, and c = 9, so the matrix is

$$A = \begin{bmatrix} 4 & 0 \\ 0 & 9 \end{bmatrix}$$

Diagonal matrix (no xy-term)

(b) a = 13, b = -10, and c = 13, so the matrix is

$$A = \begin{bmatrix} 13 & -5 \\ -5 & 13 \end{bmatrix}$$

 $A = \begin{bmatrix} 13 & -5 \\ -5 & 13 \end{bmatrix}$ Nondiagonal matrix (xy-term)

Note:

 $13x^2 - 10xy + 13y^2 - 72 = 0$ is a 45° counterclockwise rotation of $4x^2 + 9y^2 - 36 = 0$

Theorem 7.10: (Principal Axes Theorem)

For a conic whose equation is $ax^2 + bxy + cy^2 + dx + ey + f = 0$, the rotation X = PX' eliminates the xy-term when P is an orthogonal matrix, with |P| = 1, that diagonalizes the matrix of the quadratic form A.

That is,
$$P^T A P = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$
, where λ_1 and λ_2 are eigenvalues of A .

The equation of the rotated conic is $\lambda_1(x')^2 + \lambda_2(y')^2 + [d\ e]PX' + f = 0$

Ex 4: (Rotation of a Conic)

Eliminate the *xy*-term in $13x^2 - 10xy + 13y^2 - 72 = 0$

Sol:

The characteristic polynomial of A is $(\lambda - 8)(\lambda - 18)$

Eigenvalues and Eigenvectors https://manara.edu.sy/ 2023-2024 20/21

Eigenvalues:
$$\lambda_1 = 8$$
, $\lambda_2 = 18$

Eigenvectors:
$$x_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, $x_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

Normalization
$$\Rightarrow P = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} \cos 45^{\circ} & -\sin 45^{\circ} \\ \sin 45^{\circ} & \cos 45^{\circ} \end{bmatrix}$$

Then, the equation of the rotated conic is: $8(x')^2 + 18(y')^2 - 72 = 0$

which, when written in the standard form: $\frac{(x')^2}{3^2} + \frac{(y')^2}{2^2} = 1$