حَـامعة
الـمَـنارة

## CRCC507: Signals and Systems

## Lecture Notes 2: Signal Representation and Nodeling: Part B



Ramez Koudsieh, Ph.D.
Faculty of Engineering
Department of Mechatronics Manara University

# جَــامعة الـَمــنارة <br> Chapter 1 <br> Signal Representation and Modeling 

1. Introduction
2. Mathematical Modeling of Signals
3. Continuous-Time Signals
4. Discrete-Time Signals

## Energy and power definitions

- The energy of a continuous time signal $x(t)$ is given by: $E_{x}=\int_{-\infty}^{\infty}|x(t)|^{2} d t$
- The average power of a continuous time signal $x(t)$ is given by:

$$
\begin{aligned}
& \text { periodic complex signal: } P_{x}=\frac{1}{T_{0}} \int_{-T_{0} / 2}^{T_{0} / 2}|x(t)|^{2} d t \\
& \text { non-periodic complex signal: } P_{x}=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2}|x(t)|^{2} d t
\end{aligned}
$$

- Energy signals are those that have finite energy and zero power, i.e., $E_{x}<\infty$, and $P_{x}=0$.
- Power signals are those that have finite power and infinite energy, i.e., $E_{x} \rightarrow \infty$, and $P_{x}<\infty$.
- Example 1: Energy of exponential signal

Compute the energy of the exponential signal (where $\alpha>0$ ).

$$
\begin{gathered}
x(t)= \begin{cases}A e^{-\alpha t} & \text { if } t \geq 0 \\
0 & \text { otherwise }\end{cases} \\
E_{x}=\int_{0}^{\infty} A^{2} e^{-2 \alpha t} d t=\frac{A^{2}}{2 \alpha}
\end{gathered}
$$



- Example 2: Power of a sinusoidal signal

$$
\begin{aligned}
x(t) & =A \sin \left(2 \pi f_{0} t+\theta\right) \\
P_{x}=f_{0} \int_{-1 / 2 f_{0}}^{1 / 2 f_{0}} A^{2} \sin ^{2}\left(2 \pi f_{0} t+\theta\right) d t & =\frac{A^{2}}{2}
\end{aligned}
$$

## Symmetry properties

## Even and odd symmetry

- A real-valued signal is said to have even symmetry if it has the property: $x(-t)=x(t)$ for all values of $t$.
- A real-valued signal is said to have odd symmetry if it has the property: $x(-t)=-x(t)$ for all values of $t$.

Decomposition into even and odd components

- Every real-valued signal $x(t)$ has a unique representation of the form: $x(t)=$ $x_{e}(t)+x_{o}(t)$; where the signals $x_{e}$ and $x_{o}$ are even and odd, respectively.
- In particular, the signals $x_{e}$ and $x_{o}$ are given by:

$$
x_{e}(t)=1 / 2[x(t)+x(-t)] \text { and } x_{o}(t)=1 / 2[x(t)-x(-t)]
$$

Symmetry properties for complex signals

- A complex-valued signal is said to have conjugate symmetric if it has the property: $x(-t)=x^{*}(t)$ for all values of $t$.
- A complex-valued signal is said to have conjugate antisymmetric if it has the property: $x(-t)=-x^{*}(t)$ for all values of $t$.

Decomposition of complex signals

- Every complex-valued signal $x(t)$ has a unique representation of the form: $x(t)=x_{E}(t)+x_{O}(t)$; where the signals $x_{E}$ and $x_{O}$ are conjugate symmetric and conjugate antisymmetric, respectively.
- In particular, the signals $x_{E}$ and $x_{O}$ are given by:

$$
x_{E}(t)=1 / 2\left[x(t)+x^{*}(-t)\right] \text { and } x_{O}(t)=1 / 2\left[x(t)-x^{*}(-t)\right]
$$

- Example 3: Even and odd components of a rectangular pulse Determine the even and the odd components of the rectangular pulse signal.

$$
\begin{aligned}
& \Pi\left(t-\frac{1}{2}\right)= \begin{cases}1 & \text { if } 0<t<1 \\
0 & \text { otherwise }\end{cases} \\
& \begin{array}{c}
x_{e}(t)=\frac{\prod\left(t-\frac{1}{2}\right)+\prod\left(-t-\frac{1}{2}\right)}{2}=\frac{\prod(t / 2)}{2}, \quad x_{o}(t)=\frac{\prod\left(t-\frac{1}{2}\right)-\prod\left(-t-\frac{1}{2}\right)}{2} \\
\begin{array}{l|l|l|l|l|l|l}
x_{e}(t) \\
\hline
\end{array} \\
\hline-1
\end{array}
\end{aligned}
$$

## 4. Discrete-Time Signals

- Discrete-time signals are not defined at all time instants. they are defined only at time instants that are integer multiples of a fixed time increment $T_{s}$, that is, at $t=n T_{s}$.
- Consequently, the mathematical model for a discrete-time signal is a function $x[n]$ in which independent variable $n$ is an integer, and is referred to as the sample index.

- Sometimes discrete-time signals are also modeled using mathematical functions: $x[n]=3 \sin [0.2 n]$.
- In a discrete-time signal the time variable is discrete, yet the amplitude of each sample is continuous.
- If, in addition to limiting the time variable to the set of integers, we also limit the amplitude values to a discrete set, the resulting signal is called a digital signal.
- In the simplest case there are only two possible values for the amplitude of each sample, typically indicated by " 0 " and " 1 ". The corresponding signal is called a binary signal.


## Signal operations

- Amplitude shifting maps the input function $x[n]$ to the output function $g$ as given by $g[n]=x[n]+A$, where $A$ is a real number.



- Amplitude scaling maps the input function $x$ to the output function $g$ as given by $g[n]=B x[n]$, where $B$ is a real number.
- Geometrically, the output function $g$ is expanded/compressed in amplitude.

- Addition and Multiplication of two signals Addition of two signals is accomplished by adding the amplitudes of the two signals at each time instant. $g[n]=x_{1}[n]+x_{2}[n]$.


Multiplication of two signals is accomplished by multiplying the amplitudes of the two signals at each time instant. $g[n]=x_{1}[n] x_{2}[n]$.



- Time shifting (also called translation) maps the input signal $x$ to the output signal $g$ as given by: $g[n]=x[n-k]$; where $k$ is an integer.
- Such a transformation shifts the signal (to the left or right) along the time axis.
- If $k>0, g$ is shifted to the right by $|k|$, relative to $x$ (i.e., delayed in time).
- If $k<0, g$ is shifted to the left by $|k|$, relative to $x$ (i.e., advanced in time).

- Time scaling maps the input signal $x$ to the output signal $g$ as given by: $g[n]=x[k n] ; \quad$ downsampling and $g[n]=x[n / k] ;$ upsampling
 where $k$ is a strictly positive integer.


جَــامعة
الـَمَـنارة


- Time reversal (also known as reflection) maps the input signal $x$ to the output signal $g$ as given by $g[n]=x[-n]$.
- Geometrically, the output signal $g$ is a reflection of the input signal $x$ about the (vertical) line $n=0$.


Basic building blocks for discrete-time signals

## Unit-impulse function

- The unit-impulse function, denoted $\delta$, is defined by:

$$
\delta[n]=\left\{\begin{array}{ll}
1, & \text { if } n=0 \\
0, & \text { if } n \neq 0
\end{array} \quad a \delta\left[n-n_{1}\right]= \begin{cases}a, & \text { if } n=n_{1} \\
0, & \text { if } n \neq n_{1}\end{cases}\right.
$$




- Sampling property of the unit-impulse function:

$$
x[n] \delta\left[n-n_{1}\right]=x\left[n_{1}\right] \delta\left[n-n_{1}\right]= \begin{cases}x\left[n_{1}\right], & n=n_{1} \\ 0, & n \neq n_{1}\end{cases}
$$

- Sifting property of the unit-impulse function

$$
\sum_{n=-\infty}^{\infty} x[n] \delta\left[n-n_{1}\right]=x\left[n_{1}\right]
$$




## Unit-Step Function

- The unit-step function, denoted $u$, is defined as:

$$
u[n]= \begin{cases}1, & \text { if } n \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$



- Relationship between the unit-step function and the unit-impulse function:

$$
\delta[n]=u[n]-u[n-1]
$$

- Conversely, $u[n]=\sum_{k=-\infty}^{n} \delta[k]$

$$
\text { or, } u[n]=\sum_{k=0}^{\infty} \delta[n-k]
$$




## Unit-Ramp Function

- The unit-ramp function, denoted $r$, is defined as:

$$
r[n]= \begin{cases}n & \text { if } n \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$



- or, equivalently:

$$
r[n]=n u[n]
$$




- Constructing a unit-ramp from a unit-step $r[n]=\sum_{n=-\infty}^{n-1} u[k]$


## Sinusoidal Signal

- A discrete-time sinusoidal function is a function of the form

$$
x[n]=A \cos \left(\Omega_{0} n+\theta\right)
$$

where $A$ is the amplitude of the signal, $\Omega_{0}$ is the angular frequency (rad), and $\theta$ is the initial phase angle (rad). $\Omega_{0}=2 \pi F_{0}$ where $F_{0}$ is the normalized frequency (a dimensionless quantity).


$$
x[n]=3 \cos (0.1 n+\pi / 10)
$$


$x[n]=3 \cos (0.2 n+\pi / 10)$

A fundamental difference between a DT sinusoidal signal and its CT:

- For continuous-time sinusoidal signal $x_{a}(t)=A \cos \left(\omega_{0} t+\theta\right): \omega_{0}$ is in rad/s.
- For discrete-time sinusoidal signal $x[n]=A \cos \left(\Omega_{0} n+\theta\right): \Omega_{0}$ is in rad.
- Let us evaluate the amplitude of $x_{a}(t)$ at time instants that are integer multiples of $T_{s}$, and construct a discrete-time signal:

$$
x[n]=x_{a}\left(n T_{s}\right)=A \cos \left(\omega_{0} T_{s} n+\theta\right)=A \cos \left(2 \pi f_{0} T_{s} n+\theta\right)
$$

- Since the signal $x_{a}(t)$ is evaluated at intervals of $T_{s}$, the number of samples taken per unit time is $1 / T_{s}$.

$$
x[n]=A \cos \left(2 \pi\left[f_{0} / f_{s}\right] n+\theta\right)=A \cos \left(2 \pi F_{0} n+\theta\right)
$$

- The act of constructing a discrete-time signal by evaluating a continuous-time signal at uniform intervals is called sampling.
- The parameters $f_{s}$ and $T_{s}$ are referred to as the sampling rate and the sampling interval respectively.


Impulse decomposition for discrete-time signals

- Consider an arbitrary discrete-time signal $x[n]$. Let us define a new signal $x_{k}[n]$ by:

$$
x_{k}[n]=x[k] \delta[n-k]= \begin{cases}x[k], & n=k \\ 0, & n \neq k\end{cases}
$$

- The signal $x[n]$ can be reconstructed by: $x[n]=\sum_{k=-\infty}^{\infty} x_{k}[n]=\sum_{k=-\infty}^{\infty} x[k] \delta[n-k]$


## Periodic discrete-time signals

- A discrete-time signal is said to be periodic if it satisfies: $x[n]=x[n+N]$ for all values of the integer index $n$ and for a specific value of $N \neq 0$. The parameter $N$ is referred to as the period of the signal.
- The period of a periodic signal is not unique. That is, a signal that is periodic with period $N$ is also periodic with period $k N$, for every (strictly) positive integer $k, x[n]=x[n+k N]$.
- The smallest period with which a signal is periodic is called the fundamental period.
- The normalized fundamental frequency of a discrete-time periodic signal is $F_{0}=1 / N$.
Periodicity of discrete-time sinusoidal signals

$$
\begin{aligned}
A \cos \left(2 \pi F_{0} n+\theta\right) & =A \cos \left(2 \pi F_{0}[n+N]+\theta\right) \\
& =A \cos \left(2 \pi F_{0} n+2 \pi F_{0} N+\theta\right)
\end{aligned}
$$

$$
2 \pi F_{0} N=2 \pi k \Rightarrow N=k / F_{0}
$$

$N$ must be an integer value

- Example 4: Periodicity of a discrete-time sinusoidal signal

Check the periodicity of the following discrete-time signals:
a. $x[n]=\cos (0.2 n)$
b. $x[n]=\cos (0.2 \pi n+\pi / 5)$
c. $x[n]=\cos (0.3 \pi n-\pi / 10)$
a. $x[n]=\cos (0.2 n)$
$\Omega_{0}=0.2 \Rightarrow F_{0}=\Omega_{0} / 2 \pi=0.2 / 2 \pi=0.1 / \pi \Rightarrow N=k / F_{0}=10 \pi k$
Since no value of $k$ would produce an integer value for $N$, the signal is not periodic.
b. $x[n]=\cos (0.2 \pi n+\pi / 5)$
$\Omega_{0}=0.2 \pi \Rightarrow F_{0}=\Omega_{0} / 2 \pi=0.2 \pi / 2 \pi=0.1 \Rightarrow N=k / F_{0}=10 k$
For $k=1$ we have $N=10$ samples as the fundamental period.
c. $x[n]=\cos (0.3 \pi n-\pi / 10)$

$$
\Omega_{0}=0.3 \pi \Rightarrow F_{0}=\Omega_{0} / 2 \pi=0.3 \pi / 2 \pi=0.15 \Rightarrow N=k / F_{0}=k / 0.15
$$

For $k=3$ we have $N=20$ samples as the fundamental period.


- Example 5: Periodicity of a multi-tone discrete-time sinusoidal signal Comment on the periodicity of the two-tone discrete-time signal:

$$
x[n]=2 \cos (0.4 \pi n)+1.5 \sin (0.48 \pi n)
$$

$$
\begin{aligned}
& x[n]=x_{1}[n]+x_{2}[n] \\
& x_{1}[n]=2 \cos \left(\Omega_{1} n\right) \\
& \Omega_{1}=0.4 \pi \Rightarrow F_{1}=\Omega_{1} / 2 \pi=0.4 \pi / 2 \pi=0.2 \\
& \Rightarrow N=k_{1} / F_{1}=5 k_{1}
\end{aligned}
$$

For $k_{1}=1$ we have $N_{1}=5$ samples as the fundamental period.
$x_{2}[n]=1.5 \cos \left(\Omega_{2} n\right)$
$\Omega_{2}=0.48 \pi \Rightarrow F_{2}=\Omega_{2} / 2 \pi=0.48 \pi / 2 \pi=0.24$
$\Rightarrow N_{2}=k_{2} / F_{2}=k_{2} / 0.24$
For $k_{2}=6$ we have $N_{2}=25$ samples as the fundamental period.
$\Rightarrow N=25$



## Energy and power definitions

- The energy of a discrete time signal $x[n]$ is given by $E_{x}=\sum_{n=-\infty}^{\infty}|x[n]|^{2}$
- A signal with finite energy is said to be an energy signal.
- The average power of a discrete time signal $x[n]$ is given by:
periodic complex signal $P_{x}=\frac{1}{N} \sum_{n=0}^{N-1}|x[n]|^{2}$
non-periodic complex signal $P_{x}=\lim _{M \rightarrow \infty} \frac{1}{2 M+1} \sum_{n=-M}^{M}|x[n]|^{2}$
- A signal with (nonzero) finite average power is said to be a power signal.
- Example 6: Energy of exponential signal Determine the energy of the exponential signal $x[n]=0.8^{n} u[n]$.

$$
E_{x}=\sum_{n=-\infty}^{\infty}|x[n]|^{2}=E_{x}=\sum_{0}^{\infty}\left(0.8^{2}\right)^{n}=\frac{1}{1-0.64}=\frac{1}{0.36} \approx 2.777
$$

- Example 7: Average power of the periodic signal Determine the normalized average power of the periodic signal

$$
\begin{aligned}
& P_{x}=\frac{1}{N} \sum_{n=0}^{N-1}|x[n]|^{2}=\frac{1}{6} \sum_{n=0}^{5} n^{2}=\frac{55}{6}
\end{aligned}
$$

## Decomposition into even and odd components

## Decomposition of real signals

- Every function $x$ has a unique representation of the form: $x[n]=x_{e}[n]+x_{o}[n]$; where the functions $x_{e}$ and $x_{o}$ are even and odd, respectively.
- In particular, the functions $x_{e}$ and $x_{o}$ are given by

$$
x_{e}[n]=1 / 2(x[n]+x[-n]) \text { and } x_{o}[n]=1 / 2(x[n]-x[-n])
$$

- The functions $x_{e}$ and $x_{o}$ are called the even part and odd part of $x$, respectively.

Decomposition of complex signals

$$
x_{E}[n]=1 / 2\left(x[n]+x^{*}[-n]\right) \text { and } x_{O}[n]=1 / 2\left(x[n]-x^{*}[-n]\right)
$$

