
https://manara.edu.sy/Analyzing Continuous Time Systems in the Time Domain 1/342023-2024

CECC507: Signals and Systems

Lecture Notes 3: Analyzing Continuous Time Systems in the Time Domain

Ramez Koudsieh, Ph.D.

Faculty of Engineering

Department of Mechatronics

Manara University

https://manara.edu.sy/


https://manara.edu.sy/Analyzing Continuous Time Systems in the Time Domain 2/342023-2024

Chapter 2

Analyzing Continuous Time Systems in the Time Domain
1 Introduction

2 Linearity and Time Invariance

3 Differential Equations for Continuous-Time Systems

4 Constant-Coefficient Ordinary Differential Equations

5 Block Diagram Representation of Continuous-Time Systems

6 Impulse Response and Convolution

7 Causality and Stability in Continuous-Time Systems

https://manara.edu.sy/


https://manara.edu.sy/Analyzing Continuous Time Systems in the Time Domain 3/342023-2024

1. Introduction

▪ In general, a system is any physical entity that takes in a set of one or more 

physical signals and, in response, produces a new set of one or more 

physical signals.

▪ One representation of a general system is by a block diagram.

Multiple-input, multiple-output (MIMO) CT system Single-input, single-output CT system
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▪ If we focus our attention on single-input/single-output systems, the interplay 

between the system and its input and output signals can be graphically 

illustrated as:

▪ The input signal is x(t), and the output signal is y(t). The system may be 

denoted by the equation y(t) = T{x(t)}, where T{.} indicates a transformation.
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▪ A system T is linear, if for all functions x1 and x2 and all constants a1 and a2, 

the following condition holds: T{a1x1(t) + a2x2(t)} = a1T {x1(t)} + a2T{x2(t)}.

2. Linearity and Time Invariance

Linearity in continuous-time systems

a1
System

T
x1(t)

a2
System

T
x2(t)

+ y(t)≡

a1x1(t)

a2

System

T

x2(t)

+ y(t)

▪ The linearity property is also referred to as the superposition property.

▪ Linear systems are much easier to design and analyze than nonlinear systems.
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▪ Example 1: Testing linearity of continuous-time systems

For each, determine if the system is linear or not:

a. y(t) = 5x(t)  √ b. y(t) = 5x(t) + 3  X

c. y(t) = 3[x(t)]2  X d. y(t) = cos(x(t))  X

Time Invariance in continuous-time systems

▪ A system T is said to be time invariant (TI) if, for every function x and every real 

constant t, the following condition holds: T{x(t)} = y(t) ⇒ T{x(t - t)} = y(t - t).

▪ Example 2: Testing time invariance of continuous-time systems

For each, determine whether the system is time-invariant or not:

a. y(t) = 5x(t)    √ b. y(t) = 3cos(x(t)) √ c. y(t) = 3cos(t)x(t) X
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3. Differential Equations for Continuous-Time Systems 

▪ One method of representing the relationship established by a system between 

its input and output signals is a differential equation.

▪ model for an ideal resistor is: ( ) ( )R Rv t Ri t=
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▪ model for an ideal inductor is:
( )

( ) = L
L

di t
v t L

dt

▪ model for an ideal capacitor is:
( )

( ) = C
C

dv t
i t C

dt

▪ Example 3: Differential equation for simple RC circuit

( )
( ) ( ), ( )

( ) ( )
( ) ( ) ( ) ( )

1 1

R
dy t

v t Ri t i t C
dt

dy t dy t
RC y t x t y t x t

dt dt RC RC

= =

+ =  + =
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( ) ( )
( ) , ( )

( ) ( ) ( ) ( ) 0

( ) ( )
( ) ( )

2

2

1 1

L

L

di t dy t
v t L i t C

dt dt
x t Ri t v t y t

d y t R dy t
y t x t

L dt LC LCdt

= =

- + + + =

+ + =

▪ Example 4: Differential equation for RLC circuit

▪ Example 5: Another RC circuit

( ) ( ) [ ( ) ( )] 0

[ ( ) ( )] ( ) 0

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) 0 ( ) ( )

1 1 2 1 2

2 2 1

2 1
2

1 2 1 2
1

2 1 2 1

1

1

x t R i t R i t i t
R i t i t y t

dy t dy t
i t C i t C y t

dt dt R
R R R Rdy t dy t

x t RC y t y t x t
dt R dt RRC RC

- + + - =

- + =

=  = +

+ +
- + - =  + =
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4. Constant-Coefficient Ordinary Differential Equations

▪ In general, CTLTI systems can be modeled with ordinary differential equations 

that have constant coefficients.

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

1 1

1 1 0 1 1 01 1

N N M M

N N M MN N N M

d y t d y t dy t d x t d x t dx t
a a a a y t b b b b x t

dt dtdt dt dt dt

- -

- -- -
+ + + + = + + + +

or it can be expressed in the form:
( ) ( )

0 0

N k M k

k kk k
k k

d y t d x t
a b
dt dt= =

= 

▪ In general, a constant-coefficient ODE has a family of solutions. In order to 

find a unique solution for y(t), initial values of the output signal and its first 

N - 1 derivatives need to be specified at a time instant t = t0. We need to 

know: ( ) ( )
( ), , ,

0 0

1

0 1

N

N
t t t t

dy t d y t
y t

dt dt

-

-
= =

to find the solution for t > t0
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▪ The differential equation
( ) ( )

0 0

N k M k

k kk k
k k

d y t d x t
a b
dt dt= =

= 

represents a linear system provided that all initial conditions are equal to zero:

( ) ( )
( ) 0, 0, , 0

0 0

1

0 1

N

N
t t t t

dy t d y t
y t

dt dt

-

-
= =

= = =

and represents a time invariance system.

Solving Differential Equations

Solution of the first-order differential equation

( )
( ) ( ), ( ): specifieda+ =

dy t
y t r t y t

dt 0▪ The differential equation

is solved as ( ) ( )( ) ( ) ( )
a a t t t- - - -= + 

tt t t

t
y t e y t e r d0

0
0
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▪ Example 5: Unit-step response of the simple RC circuit (y(0) = 0)

( ) ( )
( ) ( ) ( ) ( )

1 1
4 4

dy t dy t
y t u t y t u t

dt RC RC dt
+ =  + =

( )/

/
/ /

( ) ( )

,

0

0

1

1 0

t t RC

t RC t RC t RC

y t e u d
RC

e
e d e t

RC

t

t

t t

t

- -

-
-

=

= = - 





The DE of the circuit is:

/( ) ( ) ( ) ( ) ( )41 1t RC ty t e u t e u t- -= - = -
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▪ Example 6: Pulse response of the simple RC circuit

Response of the RC circuit to a rectangular pulse

( )

/
( ) [ ]4 2 4

2
4 1

t t ty t A e d A e et t- - - -

-
= = -Case 2: -/2 < t   /2,

Case 3: t > /2,

,

( ) [ ],

[ ],

2
2 4

2 2
4 2 2

2

0

1 t

t

t

y t A e e t

Ae e e t



  

  

- -

- -

 < -


= - - < 


- >

( )

/

( )
( ) ( / ) ( ) ( / )4

2
4 4 4

t tdy t
y t t y t e A d

dt
t t  t- -

-
+ =   = 

for A = 1 &  = 1

/ ( )

/
( ) [ ]

2 4 4 2 2

2
4 t ty t A e d Ae e e

 t  


t- - - -

-
= = -

Case 1: t  - /2, y(t) = 0
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Solution of the general differential equation

( ) ( )

= =

= 
N Mk k

k kk k
k k

d y t d x t
a b
dt dt0 0

▪ To solve the general constant-coefficient DE in the form below we will 

consider two separate components of the output signal y(t) as follows: 

y(t) = yh(t) + yp(t).

▪ The first term, yh(t), is the solution of the homogeneous DE found by ignoring 

the input signal, that is, by setting x(t) and all of its derivatives equal to zero.

( )

=

=
N k

k k
k

d y t
a
dt0

0
▪ yh(t) is called the natural response of the system.

▪ yh(t) depends on the structure of the system as well as the initial state of the 

system. It does not depend, on the input signal.
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▪ yh(t) is the part of the response that is produced by the system due to a 

release of the energy stored within the system.

▪ For a stable system, yh(t) tends to gradually disappear in time. Because of 

this, it is also referred to as the transient response of the system.

▪ The second term yp(t) is part of the solution that is due to the input signal x(t) 
being applied to the system. It is referred to as the particular solution of the 

differential equation.

▪ yp(t) depends on the input signal x(t) and the internal structure of the system, 

but it does not depend on the initial state of the system.

▪ yp(t) is the part of the response that remains active after the homogeneous 

solution gradually becomes smaller and disappears.
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▪ yp(t) will be linked to the steady-state response of the system, that is, the 

response to an input signal that has been applied for a long enough time for 

the transient terms to die out.

▪ Example 7: Natural response of the simple RC circuit

Consider the RC circuit with R = 1 Ω and C = 1/4 F. Let the input terminals of 

the circuit be connected to a battery that supplies the circuit with an input 

voltage of 5 V up to the time instant t = 0.

Finding the natural response of a continuous-time system

for t < 0   for t ≥ 0
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( )
( )

( )
( ) , ( ) , 0

(0) 5

( ) ( )

4

4

1
0

4 0

5

5

t
h

h

t
h

dy t
y t

dt RC
dy t

y t y t ce t
dt
y c

y t e u t

-

-

+ =

+ = = 

=  =

=

▪ Example 8: Natural response of a second-order system (RLC circuit)

At time t = 0, the initial inductor current is i(0) = 0.5 A and the initial capacitor 

voltage is y(0) = 2 V. x(t) = 0. Determine the output voltage y(t) if

a. the element values are R = 2 Ω, L = 1 H and C = 1/26 F,

b. the element values are R = 6 Ω, L = 1 H and C = 1/9 F.
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( ) ( ) ( ) ( )
( ) ( )

2 2

2 2

1
0 2 26 0. d y t R dy t d y t dy t

a y t y t
L dt LC dtdt dt

+ + =  + + =

( ) cos ( ) sin ( ), 0

(0) , (0) (0) 0.5 ,

( ) ( cos ( ) sin ( )) ( )

1 2

1 2

5 5

2 2 3

2 5 3 5

t t
h

h
h

t t
h

y t c e t c e t t
dy

y i C c c
dt

y t e t e t u t

- -

- -

= + 

= = =  = =

= +

( ) ( ) ( ) ( )
( ) ( )

2 2

2 2

1
0 6 9 0. d y t R dy t d y t dy t

b y t y t
L dt LC dtdt dt

+ + =  + + =

( ) , 0

(0) , (0) (0) 0.5 ,

( ) ( ) ( )

3 3
1 2

1 2

3 3

2 2 10 5

2 10 5

.

.

t t
h

h
h

t t
h

y t c e c te t
dy

y i C c c
dt

y t e te u t

- -

- -

= + 

= = =  = =

= +
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( ) ,t t
hy t e te t- -= + .3 32 10 5 0( ) cos( ) cos( ),t t

hy t e t e t t- -= + 2 5 3 5 0

▪ Example 9: Forced response of the first-order system for sinusoidal input

The initial value of the output signal is y(0) = 5. Determine the output signal in 

response to a sinusoidal input signal in the form x(t) = 5cos(8t).

( )
( ) ( )

dy t
y t x t

dt
+ =4 4 ( ) , 0t

hy t ce t-= 4

( )
( ) cos( ) sin( ) sin( ) cos( )

p
p

dy t
y t a t b t a t b t

dt
= +  = - +8 8 8 8 8 8

Finding the forced response of a continuous-time system
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sin( ) cos( ) cos( ) sin( ) cos( ) 1, 2a t b t a t b t t a b- + + + =  = =8 8 8 8 4 8 4 8 20 8

( ) cos( ) sin( ), 0ty t ce t t t-= + + 4 8 2 8

( ) ( )

( ) ( ) cos( ) sin( ) , 0t

y t y tt ss

y c y t e t t t-=  =  = + + 40 5 4 4 8 2 8

( ) , lim { ( )} 0t
t t

t
y t e y t-

→
= =44 yt(t): transient response of the system

( ) cos( ) sin( )ssy t t t= +8 2 8 yss(t): steady-state response of the system

steady-state componentTransient component
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the complete output signal

▪ Block diagrams for CT systems are constructed using three types of 

components, namely constant-gain amplifiers, signal adders and integrators.

5. Block Diagram Representation of Continuous-Time Systems
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▪ The technique for finding a block diagram from a differential equation is best 

explained with an example.

+ + + = + +
d y d y dy d x dx

a a a y b b b x
dt dtdt dt dt

3 2 2

2 1 0 2 1 03 2 2

▪ we will introduce an intermediate variable w(t)
3 2 3 2

2 1 0 2 1 03 2 3 2

d w d w dw d w d w dw
a a a w x x a a a w

dt dtdt dt dt dt
+ + + =  = - - -
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▪ The output signal y(t) can be expressed in terms of the intermediate variable 

w(t) as:

Imposing initial conditions

▪ Initial values of y(t) and its first N - 1 derivatives need to be converted to 

corresponding initial values of w(t) and its first N - 1 derivatives.

2

2 1 02

d w dw
y b b b w

dtdt
= + +
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▪ Example 10: Block diagram for continuous-time system
3 2

3 2
5 17 13 2

d y d y dy dx
y x

dt dtdt dt
+ + + = +

with the input signal x(t) = cos(20pt) and subject to initial conditions:

( ) , ,
2

2
0 0

0 1 2 4
t t

dy d y
y

dt dt= =

= = = -
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,+ + + = = +
d w d w dw dw

w x y w
dt dtdt dt

3 2

3 25 17 13 2

( ) ( ) , ,
= = = =

= = =

= = + = = +

= - = +

t t t t

t t t

dw dy dw d w
y w

dt dt dt dt

d y d w d w

dt dt dt

2

2
0 0 0 0

2 2 3

2 2 3
0 0 0

0 1 0 2 2 2

4 2

( ) ( )
== =

= - - -
tt t

d w d w dw
x w

dtdt dt

3 2

3 2
00 0

0 5 17 13 0

x(0) = 1. Solving Equations, the initial values of integrator outputs are:

( ) , ,
= =

-
= = =

t t

dw d w
w

dt dt

2

2
0 0

71 58 16
0

45 45 45
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6. Impulse Response and Convolution

▪ The (CT) convolution of the functions x and h, denoted x * h, is defined as the 

function:
( ) ( ) ( ) ( )x t h t x h t dt t t



-
* = -

Convolution operation for CTLTI systems

Properties of Convolution

▪ Is commutative. For any two functions x and h, x * h = h * x.
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▪ Is associative. For any functions x, h1, and h2, (x * h1) * h2 = x * (h1 * h2).

▪ Is distributive with respect to addition. For any functions x, h1, and h2, 

x * (h1 + h2) = x * h1 + x * h2.

▪ For any function x, ( ) ( ) ( ) ( ) ( )x t t x t d x t t  t t


-
* = - =

▪ Moreover,  is the convolutional identity. That is, for any function x, x *  = x.

Impulse response of a CTLTI system

▪ The response h of a system T to the input  is called 

the impulse response of the system (i.e., h = T).

▪ For any LTI system with input x, output y, and impulse response h, the 

following relationship holds: y = x * h.

LTI system
(t) h(t)
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▪ That is, if the impulse response of a LTI system is known, we can determine 

the response of the system to any input.

Step Response of a CTLTI system

▪ The response s(t) of a system T to the input u(t) is called the step response of 

the system.
( ) ( ) ( ) ( )t t t t t

 

-
= - = - s t u h t d h t d

0

▪ The impulse response h and step response s of a LTI system are related as

( )
( ) =

ds t
h t

dt

▪ LTI system is completely characterized by its impulse response.

x(t)

LTI system

h(t)
(t) h(t)

y(t) = x(t) * h(t)
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▪ Example 11: Impulse response of the simple RC circuit

Consider the RC circuit. Let the element values be R = 1 Ω and C = 1/4 F. 

Assume the initial value of the output at time t = 0 is y(0) = 0. Determine the 

impulse response of the system.

/ /( )
( ) ( ) ( ) ( ) ( ) ( )- - -= -  = = =t RC t RC tds t
s t e u t h t e u t e u t

dt RC
41

1 4

First method: using differential equation

( )/( ) ( )1
0

t t RC
RCy t e x dt t t- -= 

Setting x(t) = (t) ( )/ /( ) ( ) ( )1 1
0

t t RC t RC
RC RCh t e d e u tt  t t- - -= =

Second method: unit-step response of the system
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▪ Example 12: Impulse response of a second-order system (RLC circuit)

Determine the impulse response of the RLC circuit that was used in 

Example 4. Use  R = 2 Ω, L = 1 H and C = 1/26 F.

First: find the unit-step response ( ) ( )
( ) ( )+ + =

d y t dy t
y t x t

dtdt

2

2 2 26 26
( ) cos( ) sin( ), ( )- -= + =t t
h py t c e t c e t y t1 25 5 1

( ) ( ) ( ) cos( ) sin( ) 1- -= + = + +t t
h py t y t y t c e t c e t1 25 5
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Assume that the system is CTLTI, and is therefore initially relaxed.

(0) , (0) 0

( ) cos( ) sin( ) 1, 0

( )
( ) sin( ) ( )

1 1 1 2 20 1 1 5 0 2

5 0 2 5

5 2 5

.

.

.

t t

t

dy
y c c c c c

dt
s t e t e t t

ds t
h t e t u t

dt

- -

-

= = +  = - = = - +  = -

= - - + 

= =

7. Causality and Stability in Continuous-Time Systems

▪ A system T is said to be causal if, for every real constant t0, T{x(t0)} does not 

depend on x(t) for some t > t0.

▪ Acausal system is such that the value of its output at any given point in time 

can depend on the value of its input at only the same or earlier points in time.
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▪ For CTLTI systems the causality property can be related to the impulse 

response of the system h(t) = 0 for all t < 0.

( ) ( ) ( ) ( ) ( ) ( ) ( )y t h t x t h x t d h x t dt t t t t t
 

-
= * = - = - 0

▪ Example 13: causal and non causal systems 

a. CT time-delay system y(t) = x(t) + x(t - 0.01) + x(t - 0.02) √

b. CT time-forward system y(t) = x(t) + x(t + 0.1)    X
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▪ A system is said to be stable in the bounded-input bounded-output sense if 

any bounded input signal is guaranteed to produce a bounded output signal.

▪ An input signal x(t) is said to be bounded if an upper bound Bx exists such that 

x(t) < Bx < ∞ for all values of t.

▪ For stability of a continuous-time system: x(t) < Bx < ∞ ⇒ y(t) < By < ∞

▪ For a CTLTI system to be stable, its impulse response must be absolute 

integrable.
( )t t



-
<  h d

▪ Example 14: Stability of a first-order continuous-time system

Evaluate the stability of the first-order CTLTI system described by the DE:

▪ Note: A system must be causal in order to be physically realizable.
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The step response of the system is when x(t) = u(t)

( )
( ) ( ) ( ) -+ =  = +atdy t

ay t u t y t ce
dt a

1

y(0) = 0. (We take the initial value to be zero since the system is specified to 

be CTLTI. Non-zero initial conditions cannot be linear: Based on a zero input 

signal must produce a zero output signal).

y(0) = 0 ⇒ 0 = c + 1/a ⇒ c = -1/a 

( ) ( ) ( )-= - ats t e u t
a
1
1

( )
( ) ( ) ( )-= = = atds t
h t s t e u t

dt

( )
  -

-
= = 

ath t dt e dt
a0

1
Thus the system is stable if a > 0.

( )
( ) ( )+ =

dy t
ay t x t

dt

https://manara.edu.sy/
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