Ex.1. If the mass of cylinder C is 40 kg , determine the mass of cylinder A in order to hold the assembly in the position shown.

Ex.2. The $200-\mathrm{kg}$ crate is suspended using the ropes AB, AC and AD . Each rope can withstand a maximum force of 10 kN before it breaks.
If AB remains horizontal, determine the smallest angle θ to which the crate can be suspended before one of the ropes breaks.

Ex.3. If the $5-\mathrm{kg}$ block is suspended from the pulley B and the sag of the cord is $d=0.15 \mathrm{~m}$, determine the force in cord $A B C$. Neglect the size of the pulley.

Ex.4. If cable CB is subjected to a tension that is twice that of cable CA, determine the angle for equilibrium of the $10-\mathrm{kg}$ cylinder. Also, what are the tensions in wires CA and CB ?

Ex.5. The unstretched length of spring $A B$ is 3 m . If the block is held in the equilibrium position shown, determine the mass of the block at D and the unstretched length of spring AC.
 الـَمَـنارة

Ex.6. The block has a mass of 5 kg and rests on the smooth plane. Determine the unstretched length of the spring.

Ex.7. Determine the tension in cables $A B, B C$, and $C D$, necessary to support the $10-\mathrm{kg}$ and $15-\mathrm{kg}$ traffic lights at B and C, respectively. Also, find the angle θ.

Ex.8. (1) Determine the tension developed in each cord required for equilibrium of the $20-\mathrm{kg}$ lamp.
(2) Determine the maximum mass of the lamp that the cord system can support so that no single cord develops a tension exceeding 600 N .

Ex. 9. Cable $A B C$ has a length of 5 m . Determine the position x and the tension developed in $A B C$ required for equilibrium of the $100-\mathrm{kg}$ sack. Neglect the size of the pulley at B.

Ex.10. (1) The springs $B A$ and $B C$ each have a stiffness of $500 \mathrm{~N} / \mathrm{m}$ and an unstretched length of 3 m . Determine the horizontal force F applied to the cord which is attached to the small ring B so that the displacement of the ring from the wall is $d=1.5 \mathrm{~m}$.
(2) The springs $B A$ and $B C$ each have a stiffness of $500 \mathrm{~N} / \mathrm{m}$ and an unstretched length of 3 m . Determine the displacement d of the cord from the wall when a force $F=175 \mathrm{~N}$ is applied to the cord.

