
نظم متعددة المتغيرات
Multivariable Systems 

الروبوت والأنظمة الذكية

مدرس المقرر

شيحا بلال.د



المحاضرة الأولى





2

)()()(
2

)( 121 tetu

dt

tde

dt

tde −
=+

dt

tde

dt

tde )(
2

)(
2 23 =

)()()( 321 tetete =−



)(
4

1
)(

4

1)(
1

1 tute
dt

tde
+−=

)(
8

1
)(

8

1)(
1

2 tute
dt

tde
+−=

)()()( 1 tutety +−=



Modern Control Theory

The modern trend in engineering systems is toward greater
complexity, due mainly to the requirements of complex tasks and
good accuracy.

Complex systems may have multiple inputs and multiple outputs and
may be time varying.

Because of the necessity of meeting increasingly stringent
requirements on the performance of control systems, the increase
in system complexity, and easy access to large scale computers,
modern control theory, which is a new approach to the analysis and
design of complex control systems, has been developed since
around 1960.

This new approach is based on the concept of state. The concept of
state by itself is not new, since it has been in existence for a long
time in the field of classical dynamics and other fields.



Modern Control Theory Versus Conventional Control 
Theory

Modern control theory is contrasted with conventional control
theory in that the former is applicable to multiple-input, multiple-
output systems, which may be linear or nonlinear, time invariant or
time varying, while the latter is applicable only to linear time-
invariant single-input, single-output systems.

Also, modern control theory is essentially time-domain approach
and frequency domain approach, while conventional control theory
is a complex frequency-domain approach.

Before we proceed further, we must define state, state variables,
state vector, and state space.



State

The state of a dynamic system is the smallest set of variables (called
state variables) such that knowledge of these variables at 𝑡 = 𝑡0,
together with knowledge of the input for 𝑡 ≥ 𝑡0 , completely
determines the behavior of the system for any time 𝑡 ≥ 𝑡0.

Note that the concept of state is by no means limited to physical
systems. It is applicable to biological systems, economic systems,
social systems, and others.



State Variables
The state variables of a dynamic system are the variables making up
the smallest set of variables that determine the state of the dynamic
system. If at least n variables 𝑥1 , 𝑥2 , ….. , 𝑥𝑛 are needed to
completely describe the behavior of a dynamic system (so that once
the input is given for 𝑡 ≥ 𝑡0 and the initial state at 𝑡 = 𝑡0 is specified,
the future state of the system is completely determined), then such n
variables are a set of state variables.

Note that state variables need not be physically measurable or
observable quantities.

Variables that do not represent physical quantities and those that are
neither measurable nor observable can be chosen as state variables.
Such freedom in choosing state variables is an advantage of the
state-space methods. Practically, however, it is convenient to choose
easily measurable quantities for the state variables, if this is possible
at all, because optimal control laws will require the feedback of all
state variables with suitable weighting.



State Vector
If n state variables are needed to completely describe the behavior
of a given system, then these n state variables can be considered the
n components of a vector x. Such a vector is called a state vector.

A state vector is thus a vector that determines uniquely the system
state x(t) for any time 𝑡 ≥ 𝑡0, once the state at 𝑡 = 𝑡0 is given and
the input u(t) for 𝑡 ≥ 𝑡0 is specified.

State Space
The n-dimensional space whose coordinate axes consist of the
𝑥1axis, 𝑥2 axis, …. , 𝑥𝑛 axis, where 𝑥1, 𝑥2, ….. , 𝑥𝑛 are state variables,
is called a state space. Any state can be represented by a point in the
state space.



State-Space Equations

In state-space analysis we are concerned with three types of
variables that are involved in the modeling of dynamic systems: input
variables, output variables, and state variables. The state-space
representation for a given system is not unique, except that the
number of state variables is the same for any of the different state-
space representations of the same system.

The dynamic system must involve elements that memorize the
values of the input for 𝑡 ≥ 𝑡1. Since integrators in a continuous-time
control system serve as memory devices, the outputs of such
integrators can be considered as the variables that define the
internal state of the dynamic system. Thus the outputs of integrators
serve as state variables.



State-Space Equations

The number of state variables to completely define the dynamics of
the system is equal to the number of integrators involved in the
system.

Assume that a multiple-input, multiple-output system involves n
integrators. Assume also that there are r inputs 𝑢1(𝑡), 𝑢2(𝑡), … ,
𝑢𝑟(𝑡), and m outputs 𝑦1(𝑡), 𝑦2(𝑡), … , 𝑦𝑚(𝑡) .

Define n outputs of the integrators as state variables: 𝑥1, 𝑥2, ….. , 𝑥𝑛
Then the system may be described by



State-Space Equations

The outputs 𝑦1(𝑡), 𝑦2(𝑡), … , 𝑦𝑚(𝑡) of the system may be given by



State-Space Equations

If we define



State-Space Equations

Then

If vector functions f and/or g involve time t explicitly, then the
system is called a time-varying system.

If Equations are linearized about the operating state, then we have
the following linearized state equation and output equation:

where A(t) is called the state matrix, B(t) the input matrix, C(t) the 
output matrix, and D(t) the direct transmission matrix.

is the state equation

is the output equation



State-Space Equations

If vector functions f and g do not involve time t explicitly then the
system is called a time-invariant system. In this case, Equations can
be simplified to



State-Space Equations

In what follows we shall present an
example for deriving a state equation and
output equation.

EXAMPLE:

Consider the mechanical system shown in
Figure.We assume that the system is linear.
The external force u(t) is the input to the
system, and the displacement y(t) of the
mass is the output.

The displacement y(t) is measured from
the equilibrium position in the absence of
the external force. This system is a single-
input, single-output system.



EXAMPLE

From the diagram, the system equation is

This system is of second order. This means that the system involves 
two integrators. Let us define state variables 𝑥1(𝑡) and 𝑥2(𝑡) as

Then we obtain

The output equation is   



EXAMPLE

In a vector-matrix form, Equations can be written as

The output equation can be written as

They are in the standard form:

Where

Figure is a block diagram for the system. Notice that the outputs of 
the integrators are state variables.





Correlation Between Transfer Functions and 
State-Space Equations

In what follows we shall show how to derive the
transfer function of a single-input, single-output
system from the state-space equations.

• Let us consider the system whose transfer function
is given by

This system may be represented in state space by the
following equations:



Correlation Between Transfer Functions and 
State-Space Equations

where x is the state vector, u is the input, and y is the
output. The Laplace transforms of Equations are given by

Initial conditions were zero

In other words, the eigenvalues of A are identical to the poles of G(s).



EXAMPLE

We shall obtain the transfer function for the system (last
example) from the state-space equations.



Transfer Matrix.

Next, consider a multiple-input, multiple-output system. 
Assume that there are r inputs and m outputs Define

The transfer matrix G(s) relates the output Y(s) to the 
input U(s), or

where G(s) is given by

Since the input vector u is r dimensional and the output
vector y is m dimensional, the transfer matrix G(s) is an
mxr matrix.



STATE-SPACE REPRESENTATION OF SCALAR
DIFFERENTIAL EQUATION SYSTEMS

A dynamic system consisting of a finite number of
lumped elements may be described by ordinary
differential equations in which time is the
independent variable. By use of vector-matrix
notation, an nth-order differential equation may
be expressed by a first order vector-matrix
differential equation. If n elements of the vector
are a set of state variables, then the vector-matrix
differential equation is a state equation. we shall
present methods for obtaining state-space
representations of continuous-time systems.



State-Space Representation of nth-Order Systems of
Linear Differential Equations in which the Forcing
Function Does Not Involve Derivative Terms.

Consider the following nth-order system:

Noting that the knowledge of 𝑦 0 , ሶ𝑦 0 …𝑦(𝑛−1)(0)
together with the input u(t) for 𝑡 ≥ 0, determines
completely the future behavior of the system, we
may take 𝑦 𝑡 , ሶ𝑦 𝑡 …𝑦(𝑛−1)(t) as a set of n state
variables.



Let us define

Then



Or

Where



The output can be given by





Note that the state-space representation for the
transfer function system

is given also by above Equations.



Consider the differential equation system that
involves derivatives of the forcing function, such as

The main problem in defining the state variables for
this case lies in the derivative terms of the input u.
The state variables must be such that they will
eliminate the derivatives of u in the state equation.

State-Space Representation of nth-Order Systems of 
Linear Differential Equations in which the Forcing 

Function Involves Derivative Terms



One way to obtain a state equation and output
equation for this case is to define the following n
variables as a set of n state variables:



With this choice of state variables the existence and
uniqueness of the solution of the state equation is
guaranteed. With the present choice of state variables,
we obtain:



In terms of vector-matrix equations, and the output 
equation can be written as







Control Systems Analysis
in State Space



INTRODUCTION

While conventional control theory is based on the
input–output relationship, or transfer function,
modern control theory is based on the description of
system equations in terms of n first-order differential
equations, which may be combined into a first-order
vector-matrix differential equation. The use of
vector-matrix notation greatly simplifies the
mathematical representation of systems of
equations.



INTRODUCTION

The increase in the number of state variables, the
number of inputs, or the number of outputs does not
increase the complexity of the equations. In fact, the
analysis of complicated multiple-input, multiple
output systems can be carried out by procedures that
are only slightly more complicated than those
required for the analysis of systems of first-order
scalar differential equations.



STATE-SPACE REPRESENTATIONS OF
TRANSFER-FUNCTION SYSTEMS

Many techniques are available for obtaining state-
pace representations of transfer function systems.
This section presents state-space representations in
the controllable, observable, diagonal, or Jordan
canonical forms.



State-Space Representations in Canonical 
Forms

Consider a system defined by

where u is the input and y is the output. This
equation can also be written as



Controllable Canonical Form

The following state-space representation is called a
controllable canonical form:



Controllable Canonical Form

The controllable canonical form is important in
discussing the pole-placement approach to control
systems design.



Observable Canonical Form

The following state-space representation is called an 
observable canonical form:



Observable Canonical Form



Diagonal Canonical Form

Consider the transfer-function system defined by

Here we consider the case where the denominator
polynomial involves only distinct roots. For the
distinct-roots case, the transfer-function can be
written as



Diagonal Canonical Form
The diagonal canonical form of the state-space
representation of this system is given by



Jordan Canonical Form
Next we shall consider the case where the
denominator polynomial of the transfer-function
involves multiple roots. For this case, the preceding
diagonal canonical form must be modified into the
Jordan canonical form. Suppose, for example, that
the 𝑝𝑖’s are different from one another, except that
the first three 𝑝𝑖’s are equal, or 𝑝1 = 𝑝2 = 𝑝3. Then
the factored form of Y(s)/U(s) becomes



Jordan Canonical Form
The partial-fraction expansion of this last equation
becomes

A state-space representation of this system in the
Jordan canonical form is given by



Jordan Canonical Form



Example

Consider the system given by

Obtain state-space representations in the
controllable canonical form, observable canonical
form, and diagonal canonical form.







Diagonalization of n X n Matrix

the transformation

x=Pz, where



Diagonalization of n X n Matrix

will transform 𝑷−𝟏𝑨 𝑷 into the diagonal matrix, or

If the matrix A involves multiple eigenvalues, then
diagonalization is impossible. For example, if the 3X3
matrix A, where



Diagonalization of n X n Matrix

has the eigenvalues λ1,λ1, λ3then the transformation
x=Sz, where

will yield

(Jordan canonical form)
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Consider the following state-space representation of
a system.

Equations can be put in a standard form as



Where

The eigenvalues of matrix A are

λ1 = −1,λ2 = −2, λ3 = −3

Thus, three eigenvalues are distinct. If we define a
set of new state variables 𝑧1, 𝑧2, and 𝑧3, by the
transformation



Or

Where

Then we obtain

By premultiplying both sides of this last equation
by𝑃−1, we get



Or

Simplifying gives



Equation is also a state equation that describes the
same system.

The output equation, is modified to

Or

Notice that the transformation matrix P modifies the
coefficient matrix of z into the diagonal matrix.
Notice also that the diagonal elements of the matrix
𝑷−𝟏𝑨 𝑷 are identical with the three eigenvalues of A.
It is very important to note that the eigenvalues of A
and those of 𝑷−𝟏𝑨 𝑷 are identical.



Invariance of Eigenvalues

To prove the invariance of the eigenvalues under a
linear transformation, we must show that the
characteristic polynomials λІ − 𝐴 and ȁ

ȁ
λІ

− 𝑃−1𝐴 𝑃 are identical.

Since the determinant of a product is the product of
the determinants, we obtain



Invariance of Eigenvalues

Noting that the product of the determinants 𝑃−1

and 𝑃 is the determinant of the product 𝑃−1 𝑃

, we obtain

Thus, we have proved that the eigenvalues of A are 
invariant under a linear transformation.



Nonuniqueness of a Set of State Variables

It has been stated that a set of state variables is not 
unique for a given system. Suppose that 𝑥1, 𝑥2, … 𝑥𝑛
are a set of state variables.

Then we may take as another set of state variables 
any set of functions



Nonuniqueness of a Set of State Variables

provided that, for every set of values ො𝑥1, ො𝑥2, …
ො𝑥𝑛 there corresponds a unique set of values𝑥1, 𝑥2, …
𝑥𝑛, and vice versa. Thus, if x is a state vector, then
ො𝑥 where

is also a state vector, provided the matrix P is
nonsingular. Different state vectors convey the same
information about the system behavior.

examples



















































Derive the following controllable canonical form



Derive the following controllable canonical form



Derive the following controllable canonical form



Derive the following controllable canonical form



Derive the following controllable canonical form



Derive the following observable canonical form

Equation c

an be modified into the following form:



Derive the following observable canonical form



Derive the following observable canonical form

Then Equation can be written as

By substituting and multiplying both sides of the 
equations by s, we obtain



Derive the following observable canonical form

Taking the inverse Laplace transforms of the
preceding n equations and writing them in the
reverse order, we get



Derive the following observable canonical form

Also, the inverse Laplace transform of Equation gives
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