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SOLVING THE TIME-INVARIANT STATE EQUATION

We shall first consider the homogeneous case and then
the nonhomogeneous case.

Solution of Homogeneous State Equations.

Before we solve vector-matrix differential equations, let
us review the solution of the scalar differential equation

In solving this equation, we may assume a solution x(t) of
the form

By substituting this assumed solution into last Equation,
we obtain



Solution of Homogeneous State Equations

If the assumed solution is to be the true solution, last 
Equation must hold for any t.

Hence, equating the coefficients of the equal powers of t, 
we obtain



Solution of Homogeneous State Equations

The value of b0 is determined by substituting t=0 into
Equation, or

Hence, the solution x(t) can be written as

We shall now solve the vector-matrix differential
equation

Where x = n-vector

A = n X n constant matrix



Solution of Homogeneous State Equations

By analogy with the scalar case, we assume that the
solution is in the form of a vector power series in t, or

By substituting this assumed solution into Equation ( ),
we obtain

If the assumed solution is to be the true solution, last
Equation must hold for all t. Thus, by equating the
coefficients of like powers of t on both sides of Equation,
we obtain



Solution of Homogeneous State Equations

By substituting t=0 into Equation

we obtain



Solution of Homogeneous State Equations

Thus, the solution x(t) can be written as

The expression in the parentheses on the right-hand side
of this last equation is an nxn matrix. Because of its
similarity to the infinite power series for a scalar
exponential, we call it the matrix exponential and write

In terms of the matrix exponential, the solution of
Equation ( ) can be written a



Solution of Homogeneous State Equations

Since the matrix exponential is very important in the state-
space analysis of linear systems, we shall next examine its 
properties.

• Matrix Exponential. It can be proved that the matrix 
exponential of an nxn matrix A,

converges absolutely for all finite t. (Hence, computer
calculations for evaluating the elements of 𝒆𝑨𝒕 by using the
series expansion can be easily carried out.)



Solution of Homogeneous State Equations

Because of the convergence of the infinite series the series 
can be differentiated term by term to give

The matrix exponential has the property that

In particular, if s=–t, then

Thus, the inverse of 𝒆𝑨𝒕 is 𝒆−𝑨𝒕 Since the inverse of 
𝒆𝑨𝒕 always exists, 𝒆𝑨𝒕 is nonsingular.



Laplace Transform Approach to the Solution of Homogeneous 
State Equations

Let us first consider the scalar case:

Taking the Laplace transform of Equation, we obtain

Where

Solving Equation for X(s) gives

The inverse Laplace transform of this last equation gives 
the solution

The foregoing approach to the solution of the
homogeneous scalar differential equation can be extended
to the homogeneous state equation:



Laplace Transform Approach to the Solution of Homogeneous 
State Equations

Taking the Laplace transform of both sides of Equation we 
obtain

Where                         Hence,

Premultiplying both sides of this last equation by ሺ
ሻ

SI
− A −1, we obtain

The inverse Laplace transform of 𝑿ሺ𝒔ሻ gives the solution
𝒙ሺ𝒕ሻ, Thus,

Note that 



Laplace Transform Approach to the Solution of Homogeneous 
State Equations

Hence, the inverse Laplace transform of 𝐒𝐈 − 𝑨 −𝟏 gives

(The inverse Laplace transform of a matrix is the matrix
consisting of the inverse Laplace transforms of all
elements.)

The solution of Equation is obtained as

The importance of above Equation lies in the fact that it
provides a convenient means for finding the closed
solution for the matrix exponential.



Laplace Transform Approach to the Solution of Homogeneous 
State Equations

State-Transition Matrix. We can write the solution of the
homogeneous stat equation

As

If the eigenvalues λ1, λ2, … λ𝑛 of the matrix A are distinct, 
than 𝜱ሺ𝒕ሻ will contain the n exponentials

In particular, if the matrix A is diagonal, then



Laplace Transform Approach to the Solution of Homogeneous 
State Equations

If there is a multiplicity in the eigenvalues—for example, if
the eigenvalues of A are

then 𝜱ሺ𝒕ሻ will contain, in addition to the exponentials
𝑒λ1𝑡,𝑒λ4𝑡,𝑒λ5𝑡, …𝑒λ𝑛𝑡 terms like 𝑡𝑒λ1𝑡 and 𝑡2𝑒λ1𝑡.

Properties of State-Transition Matrices.

We shall now summarize the important properties of the
state-transition matrix 𝜱ሺ𝒕ሻ. For the time-invariant system

for which



Properties of State-Transition Matrices

we have the following:



EXAMPLE

Obtain the state-transition matrix 𝜱ሺ𝒕ሻ of the following
system:

Obtain also the inverse of the state-transition matrix.
𝜱−𝟏 𝒕 . For this system,

The state-transition matrix 𝜱ሺ𝒕ሻ is given by

Since



EXAMPLE

Hence,

Noting that 𝜱−𝟏 𝒕 = 𝜱ሺ−𝒕ሻ we obtain the inverse of the
state-transition matrix as follows:



Solution of Nonhomogeneous State Equations

We shall begin by considering the scalar case

Let us rewrite Equation as

Multiplying both sides of this equation by 𝑒−𝑎𝑡, we obtain

Integrating this equation between 0 and t gives



Solution of Nonhomogeneous State Equations

The first term on the right-hand side is the response to the 
initial condition and the second term is the response to the 
input u(t).

Let us now consider the nonhomogeneous state equation
described by

By writing Equation as



Solution of Nonhomogeneous State Equations

and premultiplying both sides of this equation by 𝑒−𝑎𝑡, we
obtain

Integrating the preceding equation between 0 and t gives

Equation can also be written as



Solution of Nonhomogeneous State Equations

The solution x(t) is clearly the sum of a term consisting of
the transition of the initial state and a term arising from
the input vector.



Laplace Transform Approach to the Solution of 
Nonhomogeneous State Equations

The solution of the nonhomogeneous state equation

can also be obtained by the Laplace transform approach.
The Laplace transform of this last equation yields

Premultiplying both sides of this last equation by ሺ
ሻ

𝐒𝐈
− 𝑨 −𝟏, we obtain



Laplace Transform Approach to the Solution of 
Nonhomogeneous State Equations

Using the relationship given by Equation 

Gives

The inverse Laplace transform of this last equation can be 
obtained by use of the convolution integral as follows:

• Solution in Terms of 𝑿 𝒕𝟎 Thus far we have assumed 
the initial time to be zero. If, however, the initial time is 
given by 𝒕𝟎 instead of 0, then the solution to Equation  
must be modified to



Laplace Transform Approach to the Solution of 
Nonhomogeneous State Equations

EXAMPLE

Obtain the time response of the following system:

where u(t) is the unit-step function occurring at t=0, or
u(t)=1(t). For this system,



EXAMPLE

The state-transition matrix 𝝓ሺ𝒕ሻ = 𝒆𝒂𝒕was obtained in last 
Example as

The response to the unit-step input is then obtained as

If the initial state is zero, or x(0)=0, then x(t) can be 
simplified to



SOME USEFUL RESULTS IN VECTOR-MATRIX ANALYSIS

In this section we present some useful results in vector-
matrix analysis that we use. Specifically, we present the
Cayley–Hamilton theorem, the minimal polynomial,
Sylvester’s interpolation method for calculating and the
linear independence of vectors.

Cayley–Hamilton Theorem

The Cayley–Hamilton theorem is very useful in proving
theorems involving matrix equations or solving problems
involving matrix equations.

Consider an nxn matrix A and its characteristic equation:



Cayley–Hamilton theorem

The Cayley–Hamilton theorem states that the matrix A
satisfies its own characteristic equation, or that

To prove this theorem, note that 𝒂𝒅𝒋ሺ𝝀𝑰 − 𝑨ሻ is a
polynomial in 𝝀 of degree n-1. That is,



Cayley–Hamilton theorem

From this equation, we see that A and 𝑩𝒊(i=1, 2, … , n)
commute. Hence, the product of ሺ𝝀𝑰 − 𝑨ሻ and 𝒂𝒅𝒋ሺ𝝀𝑰 − 𝑨ሻ
becomes zero if either of these is zero. If A is substituted for
𝝀 in this last equation, then clearly ሺ𝝀𝑰 − 𝑨ሻ becomes zero.
Hence, we obtain

This proves the Cayley–Hamilton theorem, or Equation



Minimal Polynomial

Referring to the Cayley–Hamilton theorem, every nxn
matrix A satisfies its own characteristic equation. The
characteristic equation is not, however, necessarily the
scalar equation of least degree that A satisfies. The least-
degree polynomial having A as a root is called the minimal
polynomial. That is, the minimal polynomial of an nxn matrix
A is defined as the polynomial 𝜱ሺ𝝀ሻ of least degree,

such that 𝜱 𝑨 = 𝟎, or

The minimal polynomial plays an important role in the
computation of polynomials in an nxn matrix.



Minimal Polynomial

Let us suppose that 𝒅ሺ𝝀ሻ a polynomial in 𝝀, is the greatest
common divisor of all the elements of 𝒂𝒅𝒋 𝝀𝑰 − 𝑨 . We can
show that if the coefficient of the highest-degree term in 𝝀 of
𝒅ሺ𝝀ሻ is chosen as 1, then the minimal polynomial 𝜱ሺ𝝀ሻ is given
by

It is noted that the minimal polynomial 𝜱ሺ𝝀ሻ of an nxn matrix A
can be determined by the following procedure:

1. Form 𝒂𝒅𝒋 𝝀𝑰 − 𝑨 and write the elements of 𝒂𝒅𝒋 𝝀𝑰 − 𝑨 as
factored polynomials in 𝝀.

2. Determine 𝒅ሺ𝝀ሻ as the greatest common divisor of all the
elements of 𝒂𝒅𝒋 𝝀𝑰 − 𝑨 Choose the coefficient of the highest-
degree term in 𝝀 of 𝒅ሺ𝝀ሻ to be 1. If there is no common divisor
𝒅 𝝀 = 𝟎.

3. The minimal polynomial 𝜱ሺ𝝀ሻ is then given as 𝝀𝑰 − 𝑨 divided
by𝒅 𝝀 .



Matrix Exponential 𝒆𝑨𝒕

In solving control engineering problems, it often becomes
necessary to compute 𝒆𝑨𝒕. If matrix A is given with all
elements in numerical values, MATLAB provides a simple
way to compute 𝒆𝑨𝑻, where T is a constant.

Aside from computational methods, several analytical
methods are available for the computation of 𝒆𝑨𝒕. We shall
present three methods here.

Computation of 𝒆𝑨𝒕: Method 1

If matrix A can be transformed into a diagonal form,
then 𝒆𝑨𝒕 can be given by



Computation of 𝒆𝑨𝒕: Method 1

where P is a diagonalizing matrix for A.

If matrix A can be transformed into a Jordan canonical form, 
then 𝒆𝑨𝒕 can be given by

where S is a transformation matrix that transforms matrix A 
into a Jordan canonical form J.



Computation of 𝒆𝑨𝒕: Method 1

As an example, consider the following matrix A:

The characteristic equation is

Thus, matrix A has a multiple eigenvalue of order 3 at 𝝀
= 𝟏 .It can be shown that matrix A has a multiple
eigenvector of order 3.The transformation matrix that will
transform matrix A into a Jordan canonical form can be given
by



Computation of 𝒆𝑨𝒕: Method 1



Computation of 𝒆𝑨𝒕: Method 1



Computation of 𝒆𝑨𝒕: Method 2

The second method of computing 𝒆𝑨𝒕 uses the Laplace
transform approach. Referring to Equation

𝒆𝑨𝒕 can be given as follows:

Thus, to obtain 𝒆𝑨𝒕 first invert the matrix 𝒔𝑰 − 𝑨 This
results in a matrix whose elements are rational functions of
s. Then take the inverse Laplace transform of each element
of the matrix.

EXAMPLE Consider the following matrix A:

Compute 𝒆𝑨𝒕 by use of the two analytical

methods presented previously.



EXAMPLE

Method 1. The eigenvalues of A are 0 and –2(𝝀𝟏 = 𝟎, 𝝀𝟐
= −𝟐) A necessary transformation matrix P may be obtained
as

Then, from Equation

is obtained as follows:



EXAMPLE

Method 2. Since

Hence,



Computation of 𝒆𝑨𝒕: Method 3

The third method is based on Sylvester’s interpolation
method. We shall first consider the case where the roots of
the minimal polynomial 𝜱ሺ𝝀ሻ of A are distinct. Then we
shall deal with the case of multiple roots.

Case 1: Minimal Polynomial of A Involves Only Distinct Roots.
We shall assume that the degree of the minimal polynomial
of A is m. By using Sylvester’s interpolation formula, it can
be shown that 𝒆𝑨𝒕can be obtained by solving the following
determinant equation



Computation of 𝒆𝑨𝒕: Method 3

By solving last Equation for 𝒆𝑨𝒕, 𝒆𝑨𝒕 can be obtained in
terms of the 𝑨𝒌(𝒌 = 0, 1, 2,… , m-1) and the 𝒆λ𝒊𝒕 (i=1, 2, 3, …
, m). [Equation may be expanded, for example, about the
last column.]

Notice that solving Equation for 𝒆𝑨𝒕 is the same as writing

and determining the 𝜶𝒌ሺ𝒕ሻ (𝒌 = 0, 1, 2,… , m-1) by solving
the following set of m equations for the 𝜶𝒌ሺ𝒕ሻ :



Computation of 𝒆𝑨𝒕: Method 3

If A is an nxn matrix and has distinct eigenvalues, then the
number of 𝜶𝒌ሺ𝒕ሻ’s to be determined is m=n. If A involves
multiple eigenvalues, but its minimal polynomial has only
simple roots, however, then the number m of 𝜶𝒌ሺ𝒕ሻ’s to be
determined is less than n.

Case 2: Minimal Polynomial of A Involves Multiple Roots. As
an example, consider the case where the minimal
polynomial of A involves three equal roots (λ1 = λ2 = λ3 )
and has other roots (λ4, λ5, … λ𝑚 ) that are all distinct. By
applying Sylvester’s interpolation formula, it can be shown
that 𝒆𝑨𝒕 can be obtained from the following determinant
equation:



Computation of 𝒆𝑨𝒕: Method 3

Equation can be solved for by expanding it about the last
column.



Computation of 𝒆𝑨𝒕: Method 3

It is noted that, just as in case 1, solving Equation for 𝒆𝑨𝒕 is
the same as writing

and determining the 𝜶𝒌 𝒕 ′𝒔 (𝒌 = 0, 1, 2,… , m-1) from



Computation of 𝒆𝑨𝒕: Method 3

The extension to other cases where, for example, there are
two or more sets of multiple roots will be apparent. Note
that if the minimal polynomial of A is not found, it is possible
to substitute the characteristic polynomial for the minimal
polynomial. The number of computations may, of course, be
increased.

Consider the matrix

Compute 𝒆𝑨𝒕 using Sylvester’s

interpolation formula.

From Equation



Computation of 𝒆𝑨𝒕: Method 3

we get

Substituting 0 for λ1 and –2 for λ2 in this last equation, we
obtain

Expanding the determinant, we obtain



Computation of 𝒆𝑨𝒕: Method 3

An alternative approach is to use Equation

We first determine 𝜶𝟎ሺ𝒕ሻ and 𝜶𝟏ሺ𝒕ሻ from



Computation of 𝒆𝑨𝒕: Method 3

Since λ1 = 0 and λ2 = −2 , the last two equations become

Solving for 𝜶𝟎ሺ𝒕ሻ and 𝜶𝟏ሺ𝒕ሻ gives



Computation of 𝒆𝑨𝒕: Method 3

Then 𝒆𝑨𝒕 can be written as



Linear Independence of Vectors

The vectors 𝑋1, 𝑋2, …𝑋𝑛 are said to be linearly independent
if

where 𝑐1, 𝑐2, … 𝑐𝑛are constants, implies that

Conversely, the vectors 𝑋1, 𝑋2, …𝑋𝑛 are said to be linearly
dependent if and only if 𝑋𝑖 can be expressed as a linear
combination of 𝑋𝑗 (j=1, 2, … , n; j ≠ i), or



Linear Independence of Vectors

for some set of constants 𝑐𝑗 .This means that if 𝑋𝑖 can be
expressed as a linear combination of the other vectors in the
set, it is linearly dependent on them or it is not an
independent member of the set.

The vectors

are linearly dependent since

The vectors



Linear Independence of Vectors

are linearly independent since

implies that

Note that if an nxn matrix is nonsingular (that is, the matrix
is of rank n or the determinant is nonzero) then n column (or
row) vectors are linearly independent. If the nxn matrix is
singular (that is, the rank of the matrix is less than n or the
determinant is zero), then n column (or row) vectors are
linearly dependent. To demonstrate this, notice that



Linear Independence of Vectors
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