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Modeling of Rigid-Body Mechanical Systems
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PULLEY DYNAMICS

Pulleys can be used to change the direction of an applied force or to amplify forces. In
our examples, we will assume that the cords, ropes, chains, and cables drive the pulleys
without slipping and are inextensible; if not, then they must be modeled as springs.
Figure shows a pulley of inertia / whose center is fixed to a support. Assume that

the tension forces in the cable are different on each side of the pulley.

Then

I6 =RT, - RL =R, - 1)
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An immediate result of practical significance is that the tension forces are approximately
equal if /6 is negligible. This condition is satisfied if either the pulley rotates at a constant
speed or if the pulley inertia is negligible compared to the other inertias in the system.
The pulley inertia will be negligible if either its mass or its radius is small. Thus, when
we neglect the mass, radius, or inertia of a pulley, the tension forces in the cable may be
taken to be the same on both sides of the pulley.

The force on the support at the pulley center is 7} + 1. If the mass, radius, or inertia
of the pulley are negligible, then the support force is 2 1;.
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EXAMPLE - A—— .

Consider the pulley system shown in Figure a. Obtain the equation of motion in terms of x
and obtain an expression for the tension forces in the cable.
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The free body diagrams of the three bodies are shown in part (b) of the figure. Newton’s law for

mass m; gives )
mix =mg—T (1)
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Newton's law for mass m; gives
myy =T, —mg (2)
I6 = RTy — RT; = R(T, — T) (3)

Because the cable is assumed inextensible, x = y and thus ¥ = y. We can then solve (1) and
(2) for the tension forces.

I =mg—mx=m(g— x) (4)
I =my+mg=m(y+g) = m(x+g) (5)

Substitute these expressions into (3).

16 = (my — m3)gR — (m + my) R% (6)
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Because x = R, x = R@, and (6) becomes

%

7

(my — mp)gR — (my + mp) Rx

which can be rearranged as

I
(IHI + my + ﬁ) xX=(m —mp)g (7)

This is the desired equation of motion. We can solve it for x and substitute the result into equa-
tions (4) and (5) to obtain 7} and 7; as functions of the parameters m;, m;, I, R, and g.

Equation (7) can be solved for x(¢) and x(¢) by direct integration.
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EQUIVALENT MASS AND INERTIA

Some systems composed of translating and rotating parts whose motions are directly
coupled can be modeled as a purely translational system or as a purely rotational system,
by using the concepts of equivalent mass and equivalent inertia. These models can be

derived using kinetic energy equivalence.
Equivalent mass and equivalent inertia are complementary concepts. A system

should be viewed as an equivalent mass if an external force is applied, and as an equiv-
alent inertia if an external torque is applied.
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EXAMPLE

A tractor pulls a cart up aslope, starting from rest and accelerating to 20m/sin 15 s (Figure a).

The force in the cable is f, and the body of the cart has a mass m. The cart has two identical
wheels, each with radius X, mass m,,, and inertia /,, about the wheel center. The two wheels are
coupled with an axle whose mass is negligible. Assume that the wheels do not slip or bounce.
Derive an expression for the force f using kinetic energy equivalence.

fL_‘ /Zﬁwheels
ol
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Solution

The assumption of no slip and no bounce means that the wheel rotation is directly coupled to the
cart translation. This means that if we know the cart translation x, we also know the wheel
rotation #, because x = K6 if the wheels do not slip or bounce. Because the input is the force f,
we will derive an equivalent mass, and thus we will visualize the system as a block of mass m.
being pulled up the incline by the force f, as shown in Figure b. The wheels will roll without

£
g
(b)
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slipping (pure rolling). Therefore, in our equivalent model, Figure b, there is no friction between

the block and the surface. The kinetic energy of the system is

- 1 2 1 2
KE = 2mv o 2(mev )+ 2(2],,,0) )
Because v = Kw, we obtain
1 Ly )

For the block in Figure b, KE = 0.5m,v?. Comparing this with equation (1) we see that
the equivalent mass is given by

Iy
me,=m-+2m, + 2732- (2)
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(m+ 2m,)g cos @

(m+ 2m,)gsin @
N

(c)

From the free body diagram we obtain the following equation of motion.

meV = f — (m+ 2my)gsiné (3)
where m, is given by equation (2).
The acceleration is v = 20/15 = 4/3 m/s?. Substitute this into equation (3) and solve for f:

f = %me + (m+2my)gsiné (4)

This is the force required to provide the specified acceleration.
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MECHANICAL DRIVES

Gears, belts, levers, and pulleys transform an input motion, force, or torque into another
motion, force, or torque at the output. For example, a gear pair can be used to reduce
speed and increase torque, and a lever can increase force.

Several types of gears are used in mechanical drives. These include helical, spur,
rack-and-pinion, worm, bevel, and planetary gears. Other mechanical drives use belts
or chains. We now use a spur gear pair, a rack-and-pinion gear pair, and a belt drive
to demonstrate the use of kinetic energy equivalence to obtain a model. This approach
can be used to analyze other gear and drive types.
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A pair of spur gears is shown in Figure. The input shaft (shaft 1) is connected
to a motor that produces a torque 7; at a speed @, and drives the output shaft (shaft 2).
One use of such a system is to increase the effective motor torque. The gear ratio V is
defined as the ratio of the input rotation @, to the output rotation 8,. Thus, N = 6,/6,.
From geometry we can see that /V is also the speed ratio N = w;/w;. Thus, the pair is
a speed reducerif N > 1. The gear ratio is also the diameter ratio N = [,/ Dy, and the
gear tooth ratio N = mp/ny, where n is the number of gear teeth.
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EXAMPLE

Consider the spur gears shown in Figure. Derive the expression for the equivalent inertia /,

felt on the input shatft.

Solution

Let /; and /; be the total moments of inertia on the shafts. The kinetic energy of the system is
then

P P T TN
KE = Ella)l - E[za)z = Ellwl x. EIZ W
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Therefore the equivalent inertia felt on the input shaft is
I
=15+ — 1
e 1+ N2 [ )

This means that the dynamics of the system can be described by the model L.w; = 1.
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A rack-and-pinion, shown in Figure, is used to convert rotation into translation. The input

shaft rotates through the angle # as a result of the torque 7" produced by a motor. The pinion
rotates and causes the rack to translate. Derive the expression for the equivalent inertia /, felt on
the input shaft. The mass of the rack is m, the inertia of the pinion is /, and its mean radius is X.
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The kinetic energy of the system is (neglecting the inertia of the shaft)

1 1 .
KE = —mx?% 4+ — 162
2 2

where X is the velocity of the rack and @ is the angular velocity of the pinion and shaft. From
geometry, x = KO, and thus x = K. Substituting for x in the expression for KE, we obtain

1 : 1 . 1 :
KE = Sm(RO)" + 516% = (mR* + 1)6?
Thus the equivalent inertia felt on the shaft is
L=mR* 4+ T (1)

and the model of the system’s dynamics is [.# = T, which can be expressed in terms of x as

Lx=RT.
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Belt drives and chain drives, like those used on bicycles, have similar characteristics and can
be analyzed in a similar way. A belt drive is shown in Figure . The input shaft (shaft 1)

is connected to a device (such as a bicycle crank) that produces a torque 7; at a speed w;, and
drives the output shaft (shaft 2). The mean sprocket radii are r; and r», and their inertias are /;

and . The belt mass is m.
Derive the expression for the equivalent inertia /. felt on the input shaft.
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The kinetic energy of the system is
1 1 1
KE = Eﬁm% - Efgmg + Emuz
If the belt does not stretch, the translational speed of the belt is v = rnw; = rzw;. Thus we can

express KE as

2 2
1 1 ra 1 2 1 I
KE = Eflmf + Efg( p ) + Em(nm]) =3 [fl + 5 (FE) + mrf] m‘i"

Therefore, the equivalent inertia felt on the input shaft is

2
L=5L+ 5 (ﬂ) + mrf (1)
2

This means that the dynamics of the system can be described by the model [, = 7.
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EXAMPLE

A single link of a robot arm is shown in Figure. The arm mass is m and its center of mass

is located a distance L from the joint, which is driven by a motor torque 7 through a pair of
spur gears. |he values of m and L depend on the payload being carried in the hand and thus can
be different for each application. The gear ratio is /=2 (the motor shaft has the greater speed).
The motor and gear rotation axes are fixed by bearings.
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To control the motion of the arm we need to have its equation of motion. Obtain this equation
in terms of the angle #. The given values for the motor, shaft, and gear inertias are

I, = 0.05 kg - m* I, = 0.025 kg - m* Is, = 0.01 kg - m*
Ic, = 0.1 kg-m?® Is, = 0.02 kg - m°

Solution

Our approach is to model the system as a single inertia rotating about the motor shaft with a
speed w;. To find the equivalent inertia about this shaft we first obtain the expression for the
kinetic energy of the total system and express it in terms of the shaft speed w;. Note that the
mass m is translating with a speed Lw;.

1 1 1
KE = E([,,, + Is, + Ig,)) % + 5([5"’ + Ic,)) w5 + Em(sz)z

But @w; = w1/ N = @, /2. Thus,
1

1
KE = = [I,,, + Is, + Ig, + ?(152 + Ic, + mLZ)] w?
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Therefore, the equivalent inertia referenced to the motor shaft is

1
be=In+Is+ Ic, + 53 (Is, + I, + mL?) = 0.115 + 0.25mL*?

The equation of motion for this equivalent inertia can be obtained in the same way as that
of a pendulum, by noting that the gravity moment mg/ sin#, which acts on shaft 2, is also felt
on the motor shaft, but reduced by a factor of NV due to the gear pair. Thus,

lewy = Ty — ]ivmg[, sin @
But @w; = Nw, = N6. Thus
I.N6 = T, — j—lv-mg[, sin @

Substituting the given values, we have

2(0.115 4+ 0.25m1L%8 = T, — %mﬂsinﬂ'

or

(0.23 +0.5m1*86 = T,, — 4.9mL sin® (1)
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