Structural Mechanics (1)

Week No-03

Deflection in Determinate Structures

Deflections of Trusses, Beams, \& Frames: Work-Energy Methods

- Deflection of trusses by Work \& Strain energy principle
- Principle of Virtual Work
- Deflections of Trusses by the V.W.M.
- Deflections of Beams by the V. W. M.
- Deflections of Frames by the V. W. M.

جَـامعة الـَمـنـارة

1) Analyzing the truss under the real load, for N in the two

حَــامعة الـَـــنارة members. We found

$$
N_{\mathrm{AB}}=1.41 P(\mathrm{~T}) \quad N_{\mathrm{AC}}=P(\mathrm{C})
$$

2) Applying a virtual unit load at A in the direction of u.

Then Analyzing For N_{v}
Considering the vertical equil. at A :

$$
N_{v, A B} \cos 45^{\circ}=0 \Rightarrow N_{v, A B}=0
$$

Considering the horizontal equil. at A :

$$
-N_{v, A C}+1_{v}=0 \Rightarrow N_{v, A C}=1(T)
$$

3) Applying the V.W.M $\quad\left(1_{v}\right) u=u=\sum_{i=1}^{2} \frac{N N_{v} L}{E A}=0+\frac{(-P)(+1) L}{E A}=\frac{-P L}{E A}$

Example 01: Use the virtual work method to determine the horizontal components of the deflection at joint C of the truss shown in the following figure.
 are then tabulated as shown in the following table:.

Member	\mathbf{L} (\mathbf{m})	\mathbf{N} $(\mathbf{k N})$	$\mathbf{N}_{\mathbf{v}}$ $(\mathbf{k N})$	$\mathbf{N}_{\mathbf{v}}(\mathbf{N L})$ $\left(\mathbf{k n}^{2}, \mathbf{m}\right)$
AB	1.2	-187.5	-1.25	281.25
AC	4.5	312.5	3.75	5273.44
BC	3.9	-487.5	-3.25	6179.06
				$\mathbf{1 1 7 3 3 . 7 5}$

$$
1\left(\Delta_{C H}\right)=\frac{1}{E} \sum \frac{N_{v}(N L)}{A}
$$

$$
\begin{aligned}
& (1 \mathrm{kN})\left(\Delta_{C H}\right)=\frac{11,733.75}{70\left(10^{6}\right) 4000\left(10^{-6}\right)} \mathrm{kN} \cdot \mathrm{~m} \\
& \Delta_{C H}=0.042 \mathrm{~m}
\end{aligned}
$$

$$
\Delta_{C H}=42 \mathrm{~mm} \rightarrow
$$

Example 02: Use the virtual work method to determine the horizontal components of the deflection at joint G of the truss shown in the following figure.

Example 02：The member axial forces due to the real system (N) and this virtual system $\left(\mathrm{N}_{\mathrm{v1}}\right)$ are then tabulated as shown in the following table：

حَــامعة الـمَـنارة ，

Member	\mathbf{L} (\mathbf{m})	\mathbf{A} $\left(\mathbf{m}^{\mathbf{2}}\right)$	\mathbf{N} $(\mathbf{k N})$	$\mathbf{N}_{\mathbf{v}}$ $(\mathbf{k N})$	$\mathbf{N}_{\mathbf{v 1}}(\mathbf{N L} / \mathbf{A})$ $\left(\mathbf{k n}^{2} / \mathbf{m}\right)$
AB	4	0.003	300	1	400000
CD	4	0.002	0	0	0
EG	4	0.002	-100	0	0
AC	3	0.003	300	1.5	450000
CE	3	0.003	0	0	0
BD	3	0.003	-75	-0.75	56250
DG	3	0.003	-75	-0.75	56250
BC	5	0.002	-375	-1.25	1171875
CG	5	0.002	125	1.25	390625
					$\mathbf{2 5 2 5 0 0 0}$

$$
\begin{gathered}
1\left(\Delta_{G H}\right)=\frac{1}{E} \sum \frac{N_{v}(N L)}{A} \\
(1 \mathrm{kN})\left(\Delta_{C H}\right)=\frac{2525000}{200\left(10^{6}\right)} \mathrm{kN.m} \\
\Delta_{G H}=0.0126 \mathrm{~m} \\
\Delta_{G H}=12.6 \mathrm{~mm} \rightarrow
\end{gathered}
$$

Example 03: Use the virtual work method to determine the horizontal and vertical components of the deflection at joint B of the truss shown in the following figure. Then find the vertical deflection at D without V.U.L.

$$
E=70 \mathrm{GPa}
$$

Example 03: Use the virtual work method to determine the horizontal and vertical components of the deflection at joint B of the truss shown in the following figure. Then find the vertical deflection at D without V.U.L.

$$
E=70 \mathrm{GPa}
$$

Example 03: Horizontal Deflection at $\mathrm{B}, \Delta_{\mathrm{BH}}$

Real System The real system and the corresponding member axial forces (N) are shown in the following figure.

Example 03: Virtual System Horizontal Deflection at B, $\Delta_{\text {BH }}$: The virtual system used for determining the horizontal deflection at B consists of a $1-\mathrm{kN}$ load applied in the horizontal direction at joint B, as shown in the following fig. The member axial forces $\left(N_{v 1}\right)$ due to this virtual load are also shown in this figure.
 are then tabulated as shown in the following table:

Member	\mathbf{L} (\mathbf{m})	\mathbf{A} $\left(\mathbf{m}^{2}\right)$	\mathbf{N} $(\mathbf{k N})$	\mathbf{N}_{v1} $(\mathbf{k N})$	$\mathbf{N}_{\mathbf{v 1}}(\mathbf{N L} / \mathbf{A})$ $\left(\mathbf{k n}^{2} / \mathbf{m}\right)$
AB	6	0.0040	-450	1	-675.000
AC	3	0.0026	75	0	0
AD	3.354	0.0026	-167.7	0	0
CD	3.354	0.0040	670.8	0	0
BD	3.354	0.0040	503.1	0	0
					$\mathbf{- 6 7 5 . 0 0 0}$

$$
\begin{gathered}
1\left(\Delta_{B H}\right)=\frac{1}{E} \sum \frac{N_{v 1}(N L)}{A} \\
(1)\left(\Delta_{B H}\right)=-\frac{675,000}{70\left(10^{6}\right)} \frac{\mathrm{kN} \cdot \mathrm{~m}}{\mathrm{kN}-\mathrm{m}}=-0.00964 \mathrm{~m} \\
\Delta_{B H}=9.64 \mathrm{~mm} \leftarrow
\end{gathered}
$$

Example 03: Virtual System Vertical Deflection at B, $\Delta_{\text {BV }}$: The virtual system used for determining the vertical deflection at B consists of a $1-\mathrm{kN}$ load applied in the vertical direction at joint B, as shown in the following fig. The member axial forces $\left(N_{v 2}\right)$ due to this virtual load are also shown in this figure.

حَــامعة الـمَـنارة

Member	L (\mathbf{m})	\mathbf{A} $\left(\mathbf{m}^{2}\right)$	N $(\mathbf{k N})$	$N_{v 2}$ $(\mathbf{k N})$	$N_{v 2}(\mathbf{N L} / \mathbf{A})$ $\left(\mathbf{k n}^{2} / \mathbf{m}\right)$
AB	6	0.0040	-450	-2	$1,350,000$
AC	3	0.0026	75	0	0
AD	3.354	0.0026	-167.7	0	0
CD	3.354	0.0040	670.8	2.236	$1,257,674$
BD	3.354	0.0040	503.1	2.236	943,255
			\sum		$\mathbf{3}, 550,929$

Example 03：the virtual work expression is applied to determine Δ_{BV} as shown below：

$$
\begin{gathered}
1\left(\Delta_{B V}\right)=\frac{1}{E} \sum \frac{N_{v 2}(N L)}{A} \\
(1)\left(\Delta_{B V}\right)=\frac{3,550,929}{70\left(10^{6}\right)} \frac{\mathrm{kN} . \mathrm{m}}{\mathrm{kN}-\mathrm{m}}=0.05073 \mathrm{~m} \\
\Delta_{B V}=50.73 \mathrm{~mm} \downarrow
\end{gathered}
$$

Example 04:

Members of the truss shown consist of sections of aluminum pipe with the cross-sectional areas indicated.

Using $E=73$ GPa, determine the vertical deflection of the point E caused by the load P.

Solution

Members of the truss shown consist of sections of aluminum pipe with the cross-sectional areas indicated.

Using $E=73 \mathrm{GPa}$, determine the vertical deflection of the point E caused by the load P .

- Find the reactions at A and B from a free-body diagram of the entire truss.

$$
A_{x}=-21 P / 8 \quad A_{y}=P \quad B_{x}=21 P / 8
$$

$$
\begin{aligned}
& \text { 10-12/03/2024 } \\
& \text { - Apply the method of joints to determine the axial force in each member. }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{llll}
F_{D E}=-\frac{17}{8} P & F_{A C}=+\frac{15}{8} P & F_{D A}=\frac{5}{4} P & F_{A B}=0 \\
F_{C E}=+\frac{15}{8} P & F_{C D}=0 & F_{D B}=-\frac{21}{8} P &
\end{array} \\
& (1 / 2) P v_{E}=\sum\left(N_{i}^{2} L_{i} / 2 E_{i} A_{i}\right) \Rightarrow v_{E} \cong 16.27 \mathrm{~mm} \downarrow
\end{aligned}
$$

حَـامعة الـمَــنارة

Determine the smallest cross-sectional area (A) required for the members of the truss shown, so that the vertical deflection at joint (B) does not exceed 10 mm . Use the virtual work method.

$$
\begin{gathered}
2 \text { at } 2 \mathrm{~m}=4 \mathrm{~m} \\
E A=\text { constant } \\
E=11 \mathrm{GPa}
\end{gathered}
$$

Example 05:

Determine the smallest cross-sectional area (A) required for the members of the truss shown, so that the vertical deflection at joint (B) does not exceed 10 mm . Use the virtual work method.

Homework

Problem.02: Use the virtual work method to determine the horizontal deflection at joint (E) of the truss shown.

