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Energy and power definitions

▪ The energy of a continuous time signal x(t) is given by: ( )xE x t dt
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▪ The average power of a continuous time signal x(t) is given by:
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periodic complex signal:

non-periodic complex signal:

▪ Energy signals are those that have finite energy and zero power, i.e., Ex < ∞, 

and Px = 0.

▪ Power signals are those that have finite power and infinite energy, i.e., 

Ex → ∞, and Px < ∞.
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▪ Example 1: Energy of exponential signal

Compute the energy of the exponential signal (where a > 0).
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▪ Example 2: Power of a sinusoidal signal

x(t) = A sin(2pf0t + q)
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Symmetry properties

▪ A real-valued signal is said to have even symmetry if it has the property: 

x(−t) = x(t) for all values of t.

▪ A real-valued signal is said to have odd symmetry if it has the property: 

x(−t) = −x(t) for all values of t.

Even and odd symmetry

Decomposition into even and odd components

▪ Every real-valued signal x(t) has a unique representation of the form: x(t) = 

xe(t) + xo(t); where the signals xe and xo are even and odd, respectively.

▪ In particular, the signals xe and xo are given by:

xe(t) = ½ [x(t) + x(−t)] and xo(t) = ½ [x(t) − x(−t)]
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Decomposition of complex signals

Symmetry properties for complex signals

▪ A complex-valued signal is said to have conjugate symmetric if it has the 

property: x(−t) = x*(t) for all values of t.

▪ A complex-valued signal is said to have conjugate antisymmetric if it has the 

property: x(−t) = −x*(t) for all values of t.

▪ Every complex-valued signal x(t) has a unique representation of the form: 

x(t) = xE(t) + xO(t); where the signals xE and xO are conjugate symmetric and 

conjugate antisymmetric, respectively.

▪ In particular, the signals xE and xO are given by:

xE(t) = ½ [x(t) + x*(−t)] and xO(t) = ½ [x(t) − x*(−t)]
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▪ Example 3: Even and odd components of a rectangular pulse

Determine the even and the odd components of the rectangular pulse signal.
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▪ Example 4: Even and odd components of a sinusoidal signal

Determine the even and the odd components of the sinusoidal signal 

x(t) = 5 cos(10t + p/3).
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▪ Example 5: Symmetry of a complex exponential signal

Consider the complex exponential signal x(t) = Aejwt, A: real

x(−t) = Ae−jwt ) = (Ae−jwt)* = x*(t) ⇒ the signal x(t) is conjugate symmetric.

Right and Left-Sided Signals

▪ A signal x is said to be right sided if, for some (finite) real constant t0, the 

following condition holds: x(t) = 0 for all t < t0 (i.e., x is only potentially nonzero 

to the right of t0).

▪ A signal x is said to be causal if x(t) = 0 for all t < 0.
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▪ A causal signal is a special case of a right-sided signal.

▪ A causal signal is not to be confused with a causal system.

▪ A signal x is said to be left sided if, for some (finite) real constant t0, the 

following condition holds: x(t) = 0 for all t > t0 (i.e., x is only potentially nonzero 

to the left of t0).

▪ A signal x is said to be anticausal if x(t) = 0 for all t > 0.

▪ An anticausal signal is a special case of a left-sided function.

▪ An anticausal signal is not to be confused with a anticausal system.
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Finite-Duration and Two-Sided Signals

▪ A signal that is both left sided and right sided is said to be finite duration (or 

finite support).

▪ A signal that is neither left sided nor right sided is said to be two sided.
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Bounded Signals

▪ A signal x is said to be bounded if there exists some (finite) positive real 

constant A such that |x(t)| ≤ A for all t (i.e., x(t) is finite for all t).

▪ For example, the sine and cosine functions are bounded, since

|sint| ≤ 1 for all t and |cost| ≤ 1 for all t

▪ In contrast, the tangent signal and any nonconstant polynomial function p 

(e.g., p(t) = t2) are unbounded, since

lim tan and lim ( )
tt

t p t
p →

→

=  = 

2
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5. Discrete-Time Signals

▪ Discrete-time signals are not defined at all time instants. they are defined only 

at time instants that are integer multiples of a fixed time increment T, that is, 

at t = nT.

▪ Consequently, the mathematical model for a discrete-time signal is a function 

x[n] in which independent variable n is an integer, and is referred to as the 

sample index.
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▪ Sometimes discrete-time signals are also modeled using mathematical 

functions: x[n] = 3sin[0.2n].

▪ In a discrete-time signal the time variable is discrete, yet the amplitude of 

each sample is continuous. 

▪ If, in addition to limiting the time variable to the set of integers, we also limit 

the amplitude values to a discrete set, the resulting signal is called a digital 

signal.

▪ In the simplest case there are only two possible values for the amplitude of 

each sample, typically indicated by “0” and “1”. The corresponding signal is 

called a binary signal.
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Signal operations

▪ Amplitude shifting maps the input signal x[n] to the output signal g as given by 

g[n] = x[n] + A, where A is a real number.
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▪ Amplitude scaling maps the input signal x to the output signal g as given by 

g[n] = Bx[n], where B is a real number.

▪ Geometrically, the output signal g is expanded/compressed in amplitude.
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▪ Addition and Multiplication of two signals

Addition of two signals is accomplished by adding the amplitudes of the two 

signals at each time instant. g[n] = x1[n] + x2[n].
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Multiplication of two signals is accomplished by multiplying the amplitudes of 

the two signals at each time instant. g[n] = x1[n] x2[n].
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▪ Time shifting (also called translation) maps the input signal x to the output 

signal g as given by: g[n] = x[n − k]; where k is an integer.

▪ Such a transformation shifts the signal (to 

the left or right) along the time axis.

▪ If k > 0, g is shifted to the right by |k|, 

relative to x (i.e., delayed in time).

▪ If k < 0, g is shifted to the left by |k|, 

relative to x (i.e., advanced in time).
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▪ Time scaling maps the input signal x to the output signal g as given by:

 g[n] = x[kn];  downsampling

 and

  g[n] = x[n/k]; upsampling

where k is a strictly positive integer.
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Time scaling (downsampling)

Time scaling (upsampling)
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▪ Time reversal (also known as reflection) maps the input signal x to the output 

signal g as given by g[n] = x[−n].

▪ Geometrically, the output signal g is a reflection of the input signal x about the 

(vertical) line n = 0.
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Basic building blocks for discrete-time signals

▪ The unit-impulse signal, denoted d, is defined by:
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▪ Sampling property of the unit-impulse signal:
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▪ Sifting property of the unit-impulse signal
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Unit-Step Signal

, if 0
[ ]

, otherwise

1
0

n
u n
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▪ The unit-step signal, denoted u, is defined as:

▪ Relationship between the unit-step signal and the unit-impulse signal:

d[n] = u[n] − u[n − 1]
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Unit-Ramp Signal

▪ The unit-ramp signal, denoted r, is defined as:

, if 0
[ ]

, otherwise0
n n

r n


= 


or, equivalently: 

r[n] = nu[n]
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▪ Constructing a unit-ramp from a unit-step [ ] [ ]
−

=−
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n
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Sinusoidal Signal

▪ A discrete-time sinusoidal signal is a signal of the form: x[n] = Acos(W0n + q)

 where A is the amplitude of the signal, W0 is the angular frequency (rad), and 

q is the initial phase angle (rad). W0 = 2pF0 where F0 is the normalized 

frequency (a dimensionless quantity).
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x[n] = 3cos(0.1n + p/10) x[n] = 3cos(0.2n + p/10)

▪ For continuous-time sinusoidal signal xa(t) = Acos(w0t + q): w0 is in rad/s.

▪ For discrete-time sinusoidal signal x[n] = Acos(W0n + q): W0 is in rad.

▪ Let us evaluate the amplitude of xa(t) at time instants that are integer multiples 

of Ts, and construct a discrete-time signal:

x[n] = xa(nTs) = Acos(w0Tsn + q) = Acos(2pf0Tsn + q)

A fundamental difference between a DT sinusoidal signal and its CT:
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▪ Since the signal xa(t) is evaluated at intervals of Ts, the number of samples 

taken per unit time is 1/Ts.  ( )[ ] cos / cos( )0 02 2sx n A f f n A F np q p q= + = +

▪ The act of constructing a discrete-time signal by evaluating a continuous-time 

signal at uniform intervals is called sampling.

▪ The parameters fs and Ts are referred to as the sampling rate and the 

sampling interval respectively.
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Impulse decomposition for discrete-time signals

▪ Consider an arbitrary discrete-time signal x[n]. Let us define a new signal xk[n] 

by:
[ ],

[ ] [ ] [ ]
0,k

x k n k
x n x k n k

n k
d

=
= − =  

[ ] [ ] [ ] [ ]k
k k

x n x n x k n kd
 

=− =−

= = − ▪ The signal x[n] can be reconstructed by:

Periodic discrete-time signals

▪ A discrete-time signal is said to be periodic if it satisfies: x[n] = x[n + N]

for all values of the integer index n and for a specific value of N  0. The 

parameter N is referred to as the period of the signal.
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▪ The period of a periodic signal is not unique. That is, a signal that is periodic 

with period N is also periodic with period kN, for every (strictly) positive integer 

k, x[n] = x[n + kN].

▪ The smallest period with which a signal is periodic is called the fundamental 

period.

▪ The normalized fundamental frequency of a discrete-time periodic signal is 

F0 = 1/N.

Periodicity of discrete-time sinusoidal signals

Acos(2pF0n + q) = Acos(2pF0[n + N] + q) 

= Acos(2pF0n + 2pF0N + q)

2pF0N = 2pk ⇒ N = k/F0 N must be an integer value
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▪ Example 6: Periodicity of a discrete-time sinusoidal signal

Check the periodicity of the following discrete-time signals:

a. x[n] = cos(0.2n) b. x[n] = cos(0.2pn + p/5)

c. x[n] = cos(0.3pn − p/10)

a. x[n] = cos(0.2n)

W0 = 0.2 ⇒ F0 = W0/2p = 0.2/2p = 0.1/p ⇒ N = k/F0 = 10pk

Since no value of k would produce an integer value for N, the signal is 

not periodic.

b. x[n] = cos(0.2pn + p/5)

W0 = 0.2p ⇒ F0 = W0/2p = 0.2p/2p = 0.1 ⇒ N = k/F0 = 10k

For k = 1 we have N = 10 samples as the fundamental period.
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c. x[n] = cos(0.3pn − p/10)

W0 = 0.3p ⇒ F0 = W0/2p = 0.3p/2p = 0.15 ⇒ N = k/F0 = k/0.15

For k = 3 we have N = 20 samples as the fundamental period.

x[n] = cos(0.2pn + p/5) x[n] = cos(0.3pn − p/10)

Comment on the periodicity of the two-tone discrete-time signal:

▪ Example 7: Periodicity of a multi-tone discrete-time sinusoidal signal

x[n] = 2cos(0.4pn) + 1.5sin(0.48pn)
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x[n] = x1[n] + x2[n]

x1[n] = 2cos(W1n)

W1 = 0.4p ⇒ F1 = W1/2p = 0.4p/2p = 0.2 

⇒ N = k1/F1 = 5k1

W2 = 0.48p ⇒ F2 = W2/2p = 0.48p/2p = 0.24 

⇒ N2 = k2/F2 = k2/0.24

For k2 = 6 we have N2 = 25 samples as the 

fundamental period.

x2[n] = 1.5cos(W2n)

⇒ N = 25

For k1 = 1 we have N1 = 5 samples as the 

fundamental period.

x1[n] = 2cos(0.4pn)

x2[n] = 1.5sin(0.48pn)

x[n] = x1[n] + x2[n]
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Energy and power definitions

▪ The energy of a discrete time signal x[n] is given by [ ]


=−

= x
n

E x n
2

▪ The average power of a discrete time signal x[n] is given by:
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periodic complex signal        

non-periodic complex signal

▪ Energy signals are those that have finite energy and zero power, i.e., Ex < ∞, 

and Px = 0.

▪ Power signals are those that have finite power and infinite energy, i.e., 

Ex → ∞, and Px < ∞.
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▪ Example 8: Energy and power signals

Determine whether the sequence x[n] = anu[n] is an energy signal or a power 

signal or neither for the following cases: (a) |a| < 1, (b) |a| = 1, (c) |a| > 1.
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x x
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The signal x[n] = anu[n] is an energy signal for |a| < 1.
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(b)
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The signal x[n] = anu[n] is an power signal for |a| = 1.
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The signal x[n] = anu[n] is neither an energy signal nor a power signal for 

|a| = 1.
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Symmetry properties

▪ A real-valued signal is said to have even symmetry if it has the property: 

x[−n] = x[n] for all values of n.

▪ A real-valued signal is said to have odd symmetry if it has the property: 

x[−n] = −x[n] for all values of n.

Even and odd symmetry

Decomposition into even and odd components

▪ Every real-valued signal x[n] has a unique representation of the form: x[n] = 

xe[n] + xo[n]; where the signals xe and xo are even and odd, respectively.

▪ In particular, the signals xe and xo are given by:

xe[n] = ½(x[n] + x[−n]) and xo[n] = ½(x[n] − x[−n])
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Decomposition of complex signals

Symmetry properties for complex signals

▪ A complex-valued signal is said to have conjugate symmetric if it has the 

property: x[−n] = x*[n] for all values of n.

▪ A complex-valued signal is said to have conjugate antisymmetric if it has the 

property: x[−n] = −x*[n] for all values of n.

▪ Every complex-valued signal x[n] has a unique representation of the form: 

x[n] = xE[n] + xO[n]; where the signals xE and xO are conjugate symmetric and 

conjugate antisymmetric, respectively.

▪ In particular, the signals xE and xO are given by:

xE[n] = ½(x[n] + x*[−n]) and xO[n] = ½(x[n] − x*[−n])
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