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5. Discrete-Time Signals
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Energy and power definitions

o 2
= The energy of a continuous time signal (¢) is given by: £ = j_ |:1;(t)| dt
= The average power of a continuous time signal a(¢) is given by:
. . _ 1 7,72 2
periodic complex signal: P, = ?OJ'_TO/2|x(t)| dt

L . _ .1 T2 2
non-periodic complex signal: P, = %IE)I}O? _T/2|a:(t)| dt

= Energy signals are those that have finite energy and zero power, i.e., £, < oo,
and P, =0.

» Power signals are those that have finite power and infinite energy, i.e.,
E,— o0, and P, < oo.
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= Example 1: Energy of exponential signal

Compute the energy of the exponential signal (where « > 0).

_at .
:z:(t):{Ae ift>0

0 otherwise
2
E = j APedt = A
vJo 200

» Example 2: Power of a sinusoidal signal
1(t) = A sin(2zfyt + 6)

2

12 A’sin® 2rfit +0)dt = A?

Pfﬂ - fbj-1/2j5
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Symmetry properties

Even and odd symmetry

= A real-valued signal is said to have even symmetry if it has the property:
»(—t) = 2(t) for all values of t.

= A real-valued signal is said to have odd symmetry if it has the property:
(—t) = —x(¢) for all values of t.

Decomposition into even and odd components

= Every real-valued signal 2(t) has a unique representation of the form: a(¢) =
z(t) + z,(t); where the signals z, and z, are even and odd, respectively.

= |n particular, the signals z, and z, are given by:
1,(t) = Ya[a(t) + o(~t)] and z,(f) = Ya[a(t) — a(~1)]
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Symmetry properties for complex signals

= A complex-valued signal is said to have conjugate symmetric if it has the
property: a(—t) = «*(¢) for all values of t.

= A complex-valued signal is said to have conjugate antisymmetric if it has the
property: a(—t) = —2*(¢t) for all values of ¢.
Decomposition of complex signals

= Every complex-valued signal a(¢) has a unique representation of the form:
(1) = z(t) + x(t); where the signals z, and z, are conjugate symmetric and
conjugate antisymmetric, respectively.

= |n particular, the signals z; and z, are given by:
z(t) = Z2[2(?) + z*(—t)] and z(1) = Y2[2(1) — 2%(-1)]
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= Example 3: Even and odd componehfé of a rectangular pulse
Determine the even and the odd components of the rectangular pulse signal.

1 ifo<t<l = (£)
1y —
[ =3) {O otherwise .
t
1
E— L)+ (=t —12 (t—-1)-TI(-t-1
oty =m0 2 0D g ) D028 )
ze(t) 7,(t)
0.5
05
f 1
1 1 | 1 '
05
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= Example 4: Even and odd componehfé of a sinusoidal signal
Determine the even and the odd components of the sinusoidal signal
2(t) = 5 cos(10¢ + 3).
z,(t) = 2 cos(10¢ + 7/3) + 2 cos( — 10t + z/3)
= 2.5co0s(10%)

z,(t) = 2cos(10t + 7/3) — 2 cos(—10t¢ + 7/3) R B
= — 2% 5in(10¢)

51

t (sec) t (sec)

Signal Representation and Modeling https://manara.edu.sy/ 2023-2024 8/39


https://manara.edu.sy/

6)liaJl

= Example 5: Symmetry of a complex éi(ponential signal
Consider the complex exponential signal x(t) = Ae®t, A: real

o(—t) = Ae7@t) = (Ae7@)* = £*(¢) = the signal 2(¢) is conjugate symmetric.

Right and Left-Sided Signals

= A signal z is said to be right sided if, for some (finite) real constant ¢,, the
following condition holds: x(t) = 0 for all ¢ < #, (i.e., zis only potentially nonzero
to the right of ). x(t)

I
fo

= Asignal zis said to be causal if 2(¢) = 0 for all ¢t < 0.
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»= A causal signal is a special case of a right-sided signal.
= A causal signal is not to be confused with a causal system.

= A signal z is said to be left sided if, for some (finite) real constant ¢, the
following condition holds: x(t) = 0 for all ¢ > %, (i.e., zis only potentially nonzero
to the left of ¢,). x(1)

t

= A signal zis said to be anticausal if 2(t) = 0 for all ¢ > 0.
* An anticausal signal is a special case of a left-sided function.
= An anticausal signal is not to be confused with a anticausal system.
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Finite-Duration and Two-Sided Signalé
= A signal that is both left sided and right sided is said to be finite duration (or
finite support). x(t)

) 13

» A signal that is neither left sided nor right sided is said to be two sided.
x(t)
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Bounded Signals
= A signal z is said to be bounded if there exists some (finite) positive real
constant A such that |z(¢)| < A for all ¢ (i.e., x(?) is finite for all 7).
= For example, the sine and cosine functions are bounded, since
Isint| < 1 for all t and |cost| < 1 for all ¢
= |n contrast, the tangent signal and any nonconstant polynomial function p
(e.g., p(t) = #?) are unbounded, since

lim |tant| =o0 and lim |p(t)| = o0
t_)ﬁ t—o0
2
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5. Discrete-Time Signals

» Discrete-time signals are not defined at all time instants. they are defined only
at time instants that are integer multiples of a fixed time increment 7T, that is,
att=n1.

= Consequently, the mathematical model for a discrete-time signal is a function
2{n] in which independent variable n is an integer, and is referred to as the
sample index.

z[n]

gl :

0
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= Sometimes discrete-time signals are also modeled using mathematical
functions: a{n] = 3sin[0.2n].

* [n a discrete-time signal the time variable is discrete, yet the amplitude of
each sample is continuous.

» [f, in addition to limiting the time variable to the set of integers, we also limit
the amplitude values to a discrete set, the resulting signal is called a digital
signal.

* In the simplest case there are only two possible values for the amplitude of
each sample, typically indicated by “0” and “1”. The corresponding signal is
called a binary signal.
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Signal operations

= Amplitude shifting maps the input signal 2{n] to the output signal ¢ as given by
g[n] = on] + A, where A is a real number.

z[n]

;3'.”... -

anTTﬂ H h 1t RSadihanniad i S
JINg

Lmin F——————————

gln] = z[n] + A gln] = z[n] + A

.. il e N—
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» Amplitude scaling maps the input signal z to the output signal ¢ as given by
g[n] = Ban], where B is a real number.

= Geometrically, the output signal g is expanded/compressed in amplitude.

B Yo

]

x[n]

Tmax

Jr'; IEIII'.III

I

mmﬂ” H‘”Hm Mo ottttreserer
T L
g[n] = B z[n]
B =1 B <1
B,
I|||||||||||| n _mﬂjﬂﬂ hakhhadadani IS
Br,
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» Addition and Multiplication of two signals

Addition of two signals is accomplished by adding the amplitudes of the two
signals at each time instant. g[n] = x4[n] + x,[n].

ry[n] T[]

mmﬂ'HHHHmm O AN O 1 lmnUl

g[n] = z1[n] + x2[n]

l i o m
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Multiplication of two signals is accomplished by multiplying the amplitudes of
the two signals at each time instant. g[n] = z([n] z,[n].

z1[n] T9[n]

imﬂlﬂIHHHHIIHHI, e, 1] l"ﬂﬂ1 (m_ Tl nmm

g[n] = z;[n] x3[n]
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= Time shifting (also called translatiohﬂ) maps the input signal z to the output
signal g as given by: ¢[n] = 2[n — k]; where £ is an integer.

» Such a transformation shifts the signal (to
the left or right) along the time axis.

= If £ > 0, ¢ is shifted to the right by [,
relative to z (i.e., delayed in time).

» If £ < 0, g is shifted to the left by |k,
relative to z (i.e., advanced in time).

x[n]

| /
mrrfﬂ” { hTTTTTT. R tataatonti )
n, RIiNC
g[n] = z[n — k]

/

mﬂTTT”HHWITTTTTTTT.‘
Ay

k=10

J._||-1'T‘|"l''I"l"I"I‘*'I"I'T'I' n

n + k

gln] = z[n — k]

/

wﬂﬂHHH“ﬁmm. g

k| I

!
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* Time scaling maps the input signal x to the output signal ¢ as given by:
gln] = kn]; downsampling i
and Lot
gln] = a{n/K]; upsampling s s sautl H H, H lissteiclE e

where £ is a strictly positive integer.

gln] = x[2n]

-JJI"’ i R RS
t-+-+-1"1 W “ ‘ TT_T"T"H.L 9 10 11 12 _g-gs _
5 —4 -8 —2 —1 1 2 8 4 8 8 T 37w ] b 18w

r"’-'—-. i ‘\\.""..‘
._

i 4 4 1 2 3 | 5 “‘Lh"l«"’ J
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x[n]
. TIHHHHHT
—b —5 —j -3 —2—1 & 1 2 3 4 5 €& T 8 " 1D
\\ \ 1I : .*! # f/f - J‘,’,
\‘\ 1'\' 1I'. : -"f /“ ,fj = ;.IH
\\ ‘L\ ,III : i.fj g!/ /I, -ff# -
— [ i ‘\. ! I e ol -
_fj'[”] ‘1[ “] \\ % 4 ‘,“" ’f#
X T ] ] s Time scaling (downsampling)
¢t ! ] S
-3 -2-1 0 1 2 3 4 3
z[n] o % 8 @
L ] 1 1
1] Time scaling (upsampling)
T
-3 —2=1 0 1 2 3§ 4 5
4 i’ ! | \ b b WL e
f/ !.-‘ ] | 5 \\ % = -
/f i .ri : ‘l"- \\ \"\ = 3
,r"f ;f | : % b ‘\\_ - ‘L‘H,“x
gl =eln/2 L . T
1 eV vl 4 ¥
Sraannnnnn
T - I F - - £ & T
—6 -5 —4 -3 -2 -1 0 2 4 5 6 7 8 9 1
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= Time reversal (also known as reflection) maps the input signal z to the output
signal g as given by ¢[n] = a[—n].

= Geometrically, the output signal ¢ is a reflection of the input signal = about the
(vertical) line n = 0.

x[n]

/
TTTTTTTTTI“[{\X{{‘[TTTTTTTa‘l Lrffteeeeestt
e

Tiq

x[—n]

N\
TT?TTTTTTTTT-_LLlllli.TTTTTTTI‘{[["[“[TTTTTTTTT

— Ty

!
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Basic building blocks for discrete-time signals
Unit-impulse Signal

= The unit-impulse signal, denoted o, is defined by:

1, ifn=0 ~Ja, iftn=mn
5[77,]—{0, if n =0 aé’[n—nl]—{o, if n #n,

5[n] 5n — ni]

0 0 1

= Sampling property of the unit-impulse signal:

qn]dln — nql = afndn — nq] = {g:[nl], n=mn,

: n#mn,

o1 | ‘ (1
T T
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= Sifting property of the unit-impulse signal

o0

Z z[nlo[n —n,] = z[n,]

n=—00

z[n] x[ny]

v

z[n] dln — n4|

\ x[n]
d[n — n4] ®—» _..L-_- n
/

T

T
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Unit-Step Signal
* The unit-step signal, denoted u, is defined as: uln]

L, 1fn=0
uln] = 0, otherwise

S—

N

= Relationship between the unit-step signal and the unit-impulse signal:

dn] = u[n] — u[n - 1]
n 5[] 5]

= Conversely, u[n] = ) J[k]

1 ]
k=—00 ‘
T T

o0
or, u[n] =) 6[n—k] L N e o
k=0

Summation
-!.l[.ri'.j]] =10

interval

Summeation
interval

Signal Representation and Modeling https://manara.edu.sy/ 2023-2024 25/39


https://manara.edu.sy/

>y

LR A, TR

Unit-Ramp Signal r[n]

= The unit-ramp signal, denoted r, is defined as:

In, 1tn =0 or, equivalently: H
T[n] B {O, otherwise 7’[7?,] = ’n,u[n] —-—-—.—.—.—.—.—-—-—-—5 e ! 1 I I ‘ ‘ ‘ n

gln| =mn

,TTTIII“{ n

rln] = nuln]

W,.LLLUJJJJL n

Ui

\Q?/
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» Constructing a unit-ramp from a unit-step r[n]= ) u[k]
n=—00
uln] u[n]
HHHHH _JHHM[

Summation ' 0 Summation _ _
r[ng| = ng

. rlng| = .
mnterval : ]] interval

Sinusoidal Signal
= A discrete-time sinusoidal signal is a signal of the form: afn]= Acos(Qyn+ 6)

where A is the amplitude of the signal, Q, is the angular frequency (rad), and
6 is the initial phase angle (rad). QQ, = 2xF, where F, is the normalized
frequency (a dimensionless quantity).
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I “Hﬂllln,.

. M,

| . mh.

il

,ﬂmm”“h

Rl

I .ull]m“l

|
30

-

n] = 3cos(0.1n + 7/10)

1
60

v

i

v

2n] = 3cos(0.2n + 7/10)

A fundamental difference between a DT sinusoidal signal and its CT:
= For continuous-time sinusoidal signal z(t) =

* For discrete-time sinusoidal signal a{n]

Acos(aw,t + 0): @, Is in rad/s.

= Acos(Q,n + 6): O, is in rad.

= Let us evaluate the amplitude of z () at time instants that are integer multiples
of T, and construct a discrete-time signal:

dn] =1,(nT) =

Acos(wyT',n + 6) = Acos(27xf, T.n + 6)
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= Since the signal z(?) is evaluated at intervals of T, the number of samples
taken per unit time is 1/7,. a{n] = Acos(27z[f,/f,]n + 6) = Acos2rFyn + 6)

*» The act of constructing a discrete-time signal by evaluating a continuous-time
signal at uniform intervals is called sampling.

= The parameters f, and T, are referred to as the sampling rate and the

S

sampling interval respectively. ra (1
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= Consider an arbitrary discrete-time signal z[n]. Let us define a new signal z,[n]

by:

= The signal 2{n] can be reconstructed by: z|

z.[n] = z[k]o[n — k] = 1

Periodic discrete-time signals

» A discrete-time signal is said to be periodic if it satisfies: 2fn] = an + N]

for all values of the integer index n and for a specific value of N # 0. The
parameter N is referred to as the period of the signal.
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» The period of a periodic signal is not"'unique. That is, a signal that is periodic
with period N is also periodic with period kN, for every (strictly) positive integer
k, 2[n] = afn + kMN].

» The smallest period with which a signal is periodic is called the fundamental
period.

» The normalized fundamental frequency of a discrete-time periodic signal is
Fy=1/N.
Periodicity of discrete-time sinusoidal signals
Acos(2nFgn + 6) = Acos(2xFy[n + N] + 6)
= Acos(27zFyn + 27FyN + 6)
2nl G N =27k = N =k/F, N must be an integer value
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» Example 6: Periodicity of a discrete-time sinusoidal signal

Check the periodicity of the following discrete-time signals:
a. a[n] = cos(0.2n) b. 2[n] = cos(0.27zn + #/5)
C. 2{n] = cos(0.37zn — 7/10)

a. 2{n] = cos(0.2n)

Since no value of k£ would produce an integer value for N, the signal is
not periodic.

b. 2[n] = cos(0.27zn + #/5)

Qy=027= Fy=Qy/27=02227=0.1> N=Fk/F,=10k
For k=1 we have N =10 samples as the fundamental period.
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C. 2{n] = cos(0.37zn — 7/10)

For k=3 we have N =20 samples as the fundamental period.

_ g | | an] = cos(0.37n — mp'z
= U]\Ll r”lr 11’”]11 }f”[t - Uﬂl Ih Hy 171 [
L1 U O U A | A VA A 1 A

- = - N=20 i

N =10

1{n] = cos(0.27n + 7/5)

e Al
TR I

1 1 1 | | | | ¥ | | | | | |
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Index n Index n

= Example 7: Periodicity of a multi-tone discrete-time sinusoidal signal

Comment on the periodicity of the two-tone discrete-time signal:
2 n] = 2c0s(0.477n) + 1.5sin(0.48 7n)
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2{n] = a4[n] + z,[7]

z4[n] = 2cos(2,n)
Q,=04r=F,=Q,/27=0.47227=0.2

= N = k/F; =5k,

For k; =1 we have N, =5 samples as the
fundamental period.

z[n] = 1.5c0s(Q2,n)

Q,=0487r= F,=Q,/27=0.487227r=0.24
=> N, =k,/F,=k,/0.24

For k, = 6 we have N, =25 samples as the
fundamental period.

=> N=25

r1[n| + xeln|

|n|

4l
0

T
Ny =5 :

24[n] = 2c0s(0.47m):

_al -
-} =

s
-

ANy =25

1

1 1 I
10 15 0

1y[n] = 1.5sin(0.48 z1i)

a9 kL
——* 1
1L,
L1

Tv T A 41
u\l}l \ L; i\J" 1

JII“ é IT\

O A Y
] r

Il
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Energy and power definitions

= The energy of a discrete time signal z[n] is given by F_ = Z |$[7?/]|2

*» The average power of a discrete time signal 2[n] is given by:

N—
periodic complex signal P, = % > |:1:[n]|2

non-periodic complex signal P. = lim z[n
» Energy signals are those that have finite energy and zero power, i.e., £ < oo,
and P, =0.

» Power signals are those that have finite power and infinite energy, i.e.,
E,— o0, and P, < oo.
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» Example 8: Energy and power signals

Determine whether the sequence afn] = a™u[n] iIs an energy signal or a power
signal or neither for the following cases: (a ) la| <1, (b) |a| =1, () |a] > 1.

= 2n — S 1 < 2n
n_z—oo|aj | - f,;)‘ ’ Px - J\?Lnoo 2M +1 :Z |5U[77J]| ]\}llinoo M +1 %‘CL
(a) Ea7 — Z‘CLQn _ 1 2 < o,
n=0 1 - |a|
Y RO+
P = lim ! > ‘Cf” — lim 1 1-|d - ;
M—>002M-|-1n20 Mo 2M +1 1—|CL|

The signal 2[n] = a™u[n] is an energy signal for |a| < 1.
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(b) E = Z‘am —> ©
n=0
P = lim Z‘Z”—hm i+ l
Moo 2M +1 M50 2M +1 2

The signal 2[n] = a™u[n] is an power signal for |a| = 1.

(c) E = i‘a% —> 0
n=0

1 |CI,|2(M+1) 1
P = lim Z‘ " = lim 5 —> 0
M- 2M +1 M- QM +1 |a| —1
The signal z[n] = a™u[n] is neither an energy signal nor a power signal for
la| = 1.

Signal Representation and Modeling https://manara.edu.sy/ 2023-2024 37/39


https://manara.edu.sy/

v

Symmetry properties

Even and odd symmetry

= A real-valued signal is said to have even symmetry if it has the property:
o{—n] = o{n] for all values of n.

= A real-valued signal is said to have odd symmetry if it has the property:
{—n] = —an] for all values of n.

Decomposition into even and odd components

= Every real-valued signal a[n] has a unique representation of the form: afn] =
z [n] + z [n]; where the signals z, and z, are even and odd, respectively.

= |n particular, the signals z, and z, are given by:
z[n] = Ya(aln] + af-n]) and =,[n] = Y(aln] — of-n])
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Symmetry properties for complex signai§

= A complex-valued signal is said to have conjugate symmetric if it has the
property: af[—n] = 2*[n] for all values of n.

= A complex-valued signal is said to have conjugate antisymmetric if it has the
property: af[—n] = —x*[n] for all values of n.
Decomposition of complex signals

» Every complex-valued signal z[{n] has a unique representation of the form:
z[n] = z[n] + x,[n]; where the signals z, and z, are conjugate symmetric and
conjugate antisymmetric, respectively.

= |n particular, the signals z; and z, are given by:
zgln] = 2(aln] + z*[-n]) and z[n] = ¥a(a[n] — z*[-n])
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