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1. Introduction

▪ A system is any physical entity that takes in a set of one or more physical 

signals and, in response, produces a new set of one or more physical signals.

▪ One representation of a general system is by a block diagram.

Multiple-input, multiple-output (MIMO) CT system Single-input, single-output CT system

▪ If we focus our attention on single-input/single-output systems, the interplay 

between the system and its input and output signals can be graphically 

illustrated as:
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▪ The input signal is x(t), and the output signal is y(t). The system may be 

denoted by the equation y(t) = T{x(t)}, where T{.} = Sys{.} indicates a 

transformation that defines the system in the time domain.

▪ A very simple example is a system that simply multiplies its input signal by a 

constant gain factor K to yield an output signal y(t) = K x(t),

▪ Or one that delays its input signal by a constant time delay t y(t) = x(t - t),
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▪ Or one that produces an output signal proportional to the square of the input 

signal y(t) = K[x(t)]2.

▪ A system T is linear, if for all functions x1 and x2 and all constants a1 and a2, 

the following condition holds: T{a1x1(t) + a2x2(t)} = a1T {x1(t)} + a2T{x2(t)}.

2. Basic System Properties

Linearity in continuous-time systems

▪ The linearity property is also referred to as the superposition property.

▪ Linear systems are much easier to design and analyze than nonlinear systems.
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▪ Example 1: Testing linearity of continuous-time systems

a. y(t) = 5x(t)  √ b. y(t) = 5x(t) + 3  X

c. y(t) = 3[x(t)]2  X d. y(t) = cos(x(t))  X

Time Invariance in continuous-time systems

▪ A system T is said to be time invariant (TI) if, for every function x and every real 

constant t, the following condition holds: T{x(t)} = y(t) ⇒ T{x(t - t)} = y(t - t).

▪ Example 2: Testing time invariance of continuous-time systems

a. y(t) = 5x(t)    √ b. y(t) = 3cos(x(t)) √ c. y(t) = 3cos(t)x(t) X

▪ A direct consequence of the linearity property is that, for linear systems, an 

input which is zero for all time results in an output which is zero for all time.

0 = T{0x1(t) + 0x2(t)} = 0T {x1(t)} + 0T{x2(t)} = 0 (zero-in/zero-out property)
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▪ A system T is said to be causal if, for every real constant t0, T{x(t0)} does not 

depend on x(t) for some t > t0.

▪ A causal system is such that the value of its output at any given point in time 

can depend on the value of its input at only the same or earlier points in time.

Causality in continuous-time systems
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▪ If the independent variable t represents time, a system must be causal in 

order to be physically realizable. Real-time physical systems are causal, cause 

before effect.

Stability in continuous-time systems

▪ Example 3: causal and non causal systems 

a. CT time-delay system y(t) = x(t) + x(t - 0.01) + x(t - 0.02) √

b. CT time-forward system y(t) = x(t) + x(t + 0.1)    X

▪ A system is said to be stable in the bounded-input bounded-output (BIBO) 

sense if any bounded input signal produce a bounded output signal.

▪ An input signal x(t) is said to be bounded if an upper bound Bx exists such that 

x(t) < Bx < ∞ for all values of t.
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3. Differential Equations for Continuous-Time Systems 

▪ One method of representing the relationship established by a system between 

its input and output signals is a differential equation (DE).

▪ model for an ideal resistor is: ( ) ( )R Rv t Ri t=

▪ model for an ideal inductor is:
( )

( ) = L
L

di t
v t L

dt

▪ For stability of a continuous-time system: x(t) < Bx < ∞ ⇒ y(t) < By < ∞.

▪ model for an ideal capacitor is:
( )

( ) = C
C

dv t
i t C

dt
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( )
( ) ( ), ( )

( ) ( )
( ) ( ) ( ) ( )

R
dy t

v t Ri t i t C
dt

dy t dy t
RC y t x t y t x t

dt dt RC RC

= =

+ =  + =
1 1

▪ Example 5: DE for RLC circuit

( ) ( )
( ) , ( )

( ) ( ) ( ) ( ) 0

( ) ( )
( ) ( )

L

L

di t dy t
v t L i t C

dt dt
x t Ri t v t y t

d y t R dy t
y t x t

L dt LC LCdt

= =

- + + + =

+ + =
2

2

1 1

▪ Example 4: Differential equation for simple RC circuit
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▪ Example 6: Another RC circuit

( ) ( ) [ ( ) ( )] 0

[ ( ) ( )] ( ) 0

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) 0 ( ) ( )

x t R i t R i t i t

R i t i t y t

dy t dy t
i t C i t C y t

dt dt R

R R R Rdy t dy t
x t RC y t y t x t

dt R dt RRC RC

- + + - =

- + =

=  = +

+ +
- + - =  + =

1 1 2 1 2

2 2 1

2 1
2

1 2 1 2
1

2 1 2 1

1

1

4. Constant-Coefficient Ordinary Differential Equations

▪ In general, CTLTI systems can be modeled with ordinary differential equations 

that have constant coefficients.

( ) ( ) ( ) ( )
( ) ( )

N N M M

N N M MN N N M

d y t d y t d x t d x t
a a a y t b b b x t
dt dt dt dt

- -

- -- -
+ + + = + + +

1 1

1 0 1 01 1
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or it can be expressed in the form:
( ) ( )k kN M

k kk k
k k

d y t d x t
a b
dt dt= =

= 
0 0

▪ In general, a constant-coefficient ODE has a family of solutions. In order to 

find a unique solution for y(t), initial values of the output signal and its first N - 1 

derivatives need to be specified at a time instant t = t0. We need to know:

( ) ( )
( ), , ,

N

N
t t t t

dy t d y t
y t

dt dt

-

-
= =0 0

1

0 1 to find the solution for t > t0

▪ The initial conditions in a differential equation description of an LTI system are 

directly related to the initial values of the energy storage devices in the system, 

such as initial voltages on capacitors and initial currents through inductors.

▪ Initial conditions (ICs) also represent the memory of continuous-time systems.
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▪ A system with zero ICs is said to be at rest (initially relaxed).

Solving Linear Differential Equations

Solution of the first-order differential equation

( )
( ) ( ), ( ): specifieda+ =

dy t
y t r t y t

dt 0▪ The differential equation:

is solved as:
( ) ( )( ) ( ) ( )

a a t t t- - - -= + 
tt t t

t
y t e y t e r d0

0
0

▪ Example 7: Unit-step response of the simple RC circuit (y(0) = 0)

( )
( ) ( )

( )
( ) ( )

1 1

4 4

dy t
y t u t

dt RC RC
dy t

y t u t
dt

+ = 

+ =
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/
( )/ / /( ) ( ) ,t tt t t

-
- - -= = = -  

t RCt tt RC RC t RCe
y t e u d e d e t

RC RC0 0

1
1 0

/( ) ( ) ( )

( ) ( ) ( )

-

-

= -

= -

t RC

t

y t e u t

y t e u t4

1

1

▪ Example 8: Pulse response of the simple RC circuit

( )

/

( )
( ) ( / ) ( ) ( / )4

2
4 4 4

t tdy t
y t A t y t e A d

dt
t


 t  t- -

-
+ =   = 

Case 1: t  - /2, y(t) = 0

( )

/
( ) [ ]4 2 4

2
4 1

t t ty t A e d A e et 


t- - - -

-
= = -Case 2: -/2 < t   /2,
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Case 3: t > /2,

,

( ) [ ],

[ ],

2
2 4

2 2
4 2 2

2

0

1 t

t

t

y t A e e t

Ae e e t



  

  

- -

- -

 < -


= - - < 


- >

for A = 1 &  = 1

/ ( )

/
( ) [ ]

2 4 4 2 2

2
4 t ty t A e d Ae e e

 t  


t- - - -

-
= = -

Solution of the general differential equation

▪ The complete solution of a linear constant coefficient differential equation can 

be decomposition into:

1. The point of view of Mathematics: 

Homogenous solution yh(t) + Particular solution yp(t).

2. The point of view of Engineer: Natural response yn(t) + Forced response yf(t).
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3. The point of view of control engineer: 

Zero-input response yzi(t) + Zero-state response yzs(t).

Transient response yt(t) + Steady state response yss(t).

▪ A system represented by a linear ODE, of order N, having constant 

coefficients, and with input x(t) and output y(t) is LTI if all the ICs are zero.

▪ In practice, most systems are causal, their response cannot begin before the 

input. Furthermore, most inputs are also causal, which means they start at 

t = 0 (t = 0 is the reference point).

▪ In respect to the origin, ICs are defined in two forms: Post-initial conditions, 

defined in t0 = 0+ and Pre-initial conditions, defined in t0 = 0-.

▪ The two sets of ICs are generally different, although in some cases they may 

be identical.
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▪ In practice, we are likely to know the ICs at t = 0- rather than at t = 0+.

▪ The ICs at t = 0- must be translated to t = 0+ to reflect the effect of applying 

the input at t = 0. Translating ICs for the most general DE is complicated.

▪ A necessary and sufficient condition for the ICs at t = 0+ to equal the ICs at 

t = 0- for a given input is that the right-hand side of the DE, contain no 

impulses or derivatives of impulses.

▪ For example, if M = 0, then the ICs do not need to be translated as long as 

there are no impulses in x(t). But if M = 1, then any input involving a step 

discontinuity at t = 0 generates an impulse term due to the dx(t)/dt term on the 

right-hand side, and the ICs at t = 0+ are no longer equal to the ICs at t = 0-.

▪ Note: The Laplace transform method, circumvents these difficulties.
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Determine the characteristic values                         as a1, a2, …, aN0
0

N k
kk
a a

=
=

a. If all ai are of order 1, ( ) i
N t

h ii
y t cea

=
=  1

b. If a root ai is repeated k times (order k), ( ) ji
k N ttk i

h i ji j k
y t c t e c e

aa-

= = +
= + 1 1

▪ Note: the coefficients ci or cj should be determined by the initial conditions at 

t = 0+ simultaneously with those in the particular solution.

▪ The particular solution yp(t) represents any solution of the DE for the given 

input. It is also called Forced response yf(t).

Homogeneous solution (natural response) & particular solution (forced response)

Homogeneous solution yh(t) satisfies
( )

=

=
N k

k k
k

d y t
a
dt0

0
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Input signal Particular solution

tn kntn + kn-1tn-1 + … k1t + k0 (Constant input is a special case with n = 0)

eat
keat , a is not the characteristic value (c.v.)

k1teat + k0eat, a is the characteristic value with order 1

kktkeat + kk-1tk-1eat + … k1teat + k0eat, a is the c.v. with order k

cos(t) or sin(t) k1cos(t) + k2sin(t)

The complete solution = homogeneous solution + particular solution

( ) ( ) ( )  ( ) kt
h p k p

k
forced

natural

y t y t y t c e y ta
= + = +

▪ A particular solution is usually obtained by assuming an output of the same 

general form as the input.
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▪ yh(t) is called the natural response yn(t) of the system. It depends on the 

structure of the system as well as the initial state of the system. It does not 

depend, on the input signal.

▪ For a stable system, yh(t) tends to gradually disappear in time. Because of 

this, it is also referred to as the transient response of the system.

▪ yp(t) depends on the input signal x(t) and the internal structure of the system, 

but it does not depend on the initial state of the system.

▪ yp(t) is the part of the response that remains active after the homogeneous 

solution gradually becomes smaller and disappears. 

▪ yp(t) will be linked to the steady-state response of the system.
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Zero-input response and Zero-states response

▪ If the system is not energized for t < 0, i.e., the input and the ICs are zero, it is 

LTI. However, many LTI systems represented by ODE have nonzero ICs.

▪ Considering the input signal x(t) and the ICs two different inputs, using 

superposition we have that the complete response of the ODE is composed of 

a zero-input response, due to the ICs when the input x(t) is zero, and the zero-

state response due to the input x(t) with zero ICs.

LTI
systemx(t)

Input y (t)yzs(t)
S

yzi(t)
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If all ak are of order 1, ( ) k

N
t

zi zik
k

y t c ea

=

= 
1

Zero-input response yzi(t) 

,czik could be determined by the ICs (0 )
k

k

d y

dt
-

If all ak are of order 1, ( ) ( )
1

k

N
t

zs zsk p
k

y t c e y ta

=

= +

Zero-state response yzs(t) 

(0 ) (0 )
k k

k k

d y d y

dt dt
+ --czsk could be determined by the states changes at time 0, i.e.

▪ System response to the non-zero initial states.

▪ The response is part of homogeneous solution.

▪ System response to the external input.

▪ The response includes part of the homogenous solution and particular solution.

https://manara.edu.sy/


https://manara.edu.sy/Analyzing Continuous Time Systems in the Time Domain 23/402023-2024

▪ Note: no impulses or derivatives of impulses in the right-hand side of the DE. 

(0 ) (0 ) 0
k k

k k

d y d y

dt dt
+ -- =

The complete solution = Zero-input response + Zero-state response 

( ) ( ) ( ) ( )  ( ) k k kt t t
zi zs zik zsk p k p

k k k
forced

zero statezero input natural

y t y t y t c e c e y t c e y ta a a

--

= + = + + = +  

▪ Note: the natural response = zero-input response + part of zero-state response

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ), , , , 

( ) ( ) ( ), , , , 

( ) ( ) ( ), , , , 

j j j j
zi zs zi

j j j
zi zs

j j j
zi zi

y y y y j n

y y y j n

y y y j n

- - - -

+ + +

+ - -

= + = = -

= + = -

= = = -

0 0 0 0 0 1 1

0 0 0 0 1 1

0 0 0 0 1 1
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▪ Example 9: Response of the first-order system for sinusoidal input (RC circuit)

The initial value of the output signal is y(0-) = 5. Determine the output signal in 

response to a sinusoidal input signal in the form x(t) = 5cos(8t).
( )

( ) ( )
dy t

y t x t
dt

+ =4 4

( )
( ) cos( ) sin( ) sin( ) cos( )

p
p

dy t
y t a t b t a t b t

dt
= +  = - +8 8 8 8 8 8

sin( ) cos( ) cos( ) sin( ) cos( ) 1, 2a t b t a t b t t a b- + + + =  = =8 8 8 8 4 8 4 8 20 8

( ) cos( ) sin( ), 0ty t ce t t t-= + + 4 8 2 8

( ) ( )

( ) ( ) ( )   cos( ) sin( ) , 040 0 5 4 4 8 2 8t

y tn y tp

y y c y t e t t t+ - -= =  =  = + + 

( )
( ) , ( ) ( ) ( ) , tzi
zi zi zi zi

dy t
y t y y y t e t

dt
+ - -+ = = =  = 44 0 0 0 5 5 0

( ) , 0t
hy t ce t-= 4
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( )
( ) cos( ), (0 ) (0 ) (0 ) 0

( ) cos( ) sin( )4

4 5 8

8 2 8

zs
zs zs

t
zs

dy t
y t t y y y

dt
y t e t ta

+ + -

-

+ = = - =

= + +

( ) ( )

( )   cos( ) sin( ) , 0t

y t y tt ss

y t e t t t-= + + 44 8 2 8

( ) cos( ) sin( ), 4 8 2 8 0t
zsy t e t t t-= - + + 

( ) ( )

( )   cos( ) sin( ) , 04 45 8 2 8t t

y t y tzi zs

y t e e t t t- -= + - + + 

steady-state component

Transient component

the complete output signal
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Total response

( ) cos(8 ) sin(8 ), ty t e t t t-= + + 44 2 0

Zero input response

( ) , tziy t e t-= 45 0

Zero state response

( ) cos(8 ) sin(8 ), t
zsy t e t t t-= - + + 4 2 0

Natural response

( ) , tny t e t-= 44 0

Forced response

( ) cos(8 ) sin(8 ), 2 0py t t t t= + 

Transient response

( ) , tty t e t-= 44 0

Steady state response

( ) cos(8 ) sin(8 ), ssy t t t t= + 2 0

( )
( ) ( )

dy t
y t x t

dt
+ =4 4

( ) cos( ),

(0 )

x t t

y -

=

=

5 8

5
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▪ Block diagrams for CT systems are constructed using three types of 

components, namely constant-gain amplifiers, signal adders and integrators.

5. Block Diagram Representation of Continuous-Time Systems

▪ Finding a block diagram from a DE is best explained with an example.
3 2 2

2 1 0 2 1 03 2 2

d y d y dy d x dx
a a a y b b b x

dt dtdt dt dt
+ + + = + +

▪ We will introduce an intermediate variable w(t)
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3 2 3 2

2 1 0 2 1 03 2 3 2

d w d w dw d w d w dw
a a a w x x a a a w

dt dtdt dt dt dt
+ + + =  = - - -

▪ The output signal y(t) can be 

expressed in terms of w(t) as:

2

2 1 02

d w dw
y b b b w

dtdt
= + +

https://manara.edu.sy/


https://manara.edu.sy/Analyzing Continuous Time Systems in the Time Domain 29/402023-2024

Imposing initial conditions

▪ Initial values of y(t) and its first N - 1 derivatives need to be converted to 

corresponding initial values of w(t) and its first N - 1 derivatives.

▪ Example 10: Block diagram for continuous-time system
3 2

3 2
5 17 13 2

d y d y dy dx
y x

dt dtdt dt
+ + + = +
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with the input signal x(t) = cos(20pt) and subject to initial conditions:

( ) , ,
2

2
0 0

0 1 2 4
t t

dy d y
y

dt dt= =

= = = -

,
3 2

3 2
5 17 13 2

d w d w dw dw
w x y w

dt dtdt dt
+ + + = = +

( ) ( ) , ,
2

2
0 0 0 0

2 2 3

2 2 3
0 0 0

0 1 0 2 2 2

4 2

t t t t

t t t

dw dy dw d w
y w

dt dt dt dt

d y d w d w

dt dt dt

= = = =

= = =

= = + = = +

= - = +

( ) ( )
3 2

3 2
00 0

0 5 17 13 0
tt t

d w d w dw
x w

dtdt dt == =

= - - -

x(0) = 1. Solving Equations, the initial values of integrator outputs are:
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( ) , ,
2

2
0 0

71 58 16
0

45 45 45t t

dw d w
w

dt dt= =

-
= = =

6. Impulse Response and Convolution

▪ The (CT) convolution of the functions x and h, denoted x * h, is defined as the 

function:
( ) ( ) ( ) ( )x t h t x h t dt t t



-
* = -

Convolution operation for CTLTI systems
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Properties of Convolution

▪ Is commutative. For any two functions x and h, x * h = h * x.

▪ Is associative. For any functions x, h1, and h2, (x * h1) * h2 = x * (h1 * h2).

▪ Is distributive with respect to addition. For any functions x, h1, and h2, 

x * (h1 + h2) = x * h1 + x * h2.

▪ For any function x, ( ) ( ) ( ) ( ) ( )x t t x t d x t t  t t


-
* = - =

▪ Moreover,  is the convolutional identity. That is, for any function x, x *  = x.

Impulse response of a CTLTI system

LTI system
(t) h(t)▪ The response h of a system T to the input  is called 

the impulse response of the system (i.e., h = T).
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▪ For any LTI system with input x, output y, and impulse response h, the 

following relationship holds: y = x * h.

▪ LTI system is completely characterized by its impulse response.

▪ That is, if the impulse response of a LTI system is known, we can determine 

the response of the system to any input.

Step Response of a CTLTI system

▪ The response s(t) of a system T to the input u(t) is called the step response of 

the system.
( ) ( ) ( ) ( )t t t t t

 

-
= - = - s t u h t d h t d

0

x(t)

LTI system

h(t)
(t) h(t)

y(t) = x(t) * h(t)
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▪ The impulse response h and step response s of a LTI system are related as:

( )
( ) =

ds t
h t

dt

▪ Example 11: Impulse response of the simple RC circuit

Consider the RC circuit. Let the element values be R = 1 Ω and C = 1/4 F. 

Assume y(0) = 0. Determine the impulse response of the system.

/ /( )
( ) ( ) ( ) ( ) ( ) ( )- - -= -  = = =t RC t RC tds t
s t e u t h t e u t e u t

dt RC
41

1 4

First method: using differential equation
( )/( ) ( )1

0

t t RC
RCy t e x dt t t- -= 

Setting x(t) = (t) ( )/ /( ) ( ) ( )1 1
0

t t RC t RC
RC RCh t e d e u tt  t t- - -= =

Second method: unit-step response of the system
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Linearity properties of zero-input and zero-state response

▪ Zero-state response is linear with the input.

▪ Zero-input response is linear with the initial state.

LTI system

h(t)

x(t)

yzi(t)

yzs(t) = x(t) * h(t)

{y(k)(0-)}

( ) ( ) ( ) ( ) ( )kt
zi zs zik

k zero state
zero input

y t y t y t c e x t h ta

-
-

= + = + *

▪ Notes:

1. For LTI systems, the excitation and initial states can be thought of as two 

separate inputs.

2. When the ICs are not zero, there is no linear relationship between the 

complete response of the system and the external excitation.
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3. The impulse response h(t) of an LTIC system is the zero-state output of 

the system when a unit impulse (t) is applied at the input.

▪ Example 12: Determine the impulse response of the LTIC system given by 

the following differential equation:

( ) ( )
( ) ( )

N N

N NN N

d h t d h t
a a a h t t
dt dt


-

- -
+ + + =

1

1 01

( ) ( )( ) / , ( ) , , , , n j
Nh a h j n- + += = = -1 0 1 0 0 0 1 2

( ) ( ) ( ) ( )y t y t y t x t+ + =5 6

( ) ( ) ( ) ( ), ( ) , ( )h t h t h t t h h + ++ + = = =5 6 0 1 0 0

For t > 0, the DE is given by the following homogeneous equation:

( ) ( ) ( ) , ( ) , ( )h t h t h t h h+ ++ + = = =5 6 0 0 1 0 0

( ) ( ) ( )t th t e e u t- -= -2 3
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▪ Example 13: Determine the impulse response of the LTIC system given by 

the following differential equation: ( ) ( ) ( ) ( ) ( ) ( )y t y t y t x t x t x t+ + = + +5 6 2 3

Suppose h1(t) satisfies: ( ) ( ) ( ) ( )h t h t h t t+ + =1 1 15 6

Due to the differentiation property and linearity of the LTIC system, the 

impulse response satisfies: ( ) ( ) ( ) ( )h t h t h t h t= + +1 1 12 3

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) (

t t

t t t t t t

t t t t t t

t t t t

h t e e u t

h t e e u t e e t e e u t

h t e e u t e e t e e u t t

h t e e u t t e e u t e



 



- -

- - - - - -

- - - - - -

- - - - -

= -

= - + + - = - +

= - + - + = - +

= - + + - + +

2 3
1

2 3 2 2 2 3
1

2 3 2 3 2 3
1

2 3 2 3

2 3 2 3

4 9 2 3 4 9

4 9 2 2 3 3 ) ( )

( ) ( ) ( ) ( )

t t

t t

e u t

h t t e e u t

-

- -

-

= + -

2 3

2 33 6
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Eigenfunctions of CTLTI system

▪ If the output signal is a scalar multiple of the input 

signal, we refer to the signal as an eigenfunction 

and the multiplier as the eigenvalue. 

▪ Complex exponential are eigenfunctions of LTI systems.

( )( ) ( )( ) ( ) ( ) ( )s t st s sty t h x t h e d e h e d H s et tt t t t
 - -

- -
= * = = = 

where s is a complex constant.

▪ We refer to H as the transfer function of the system.

https://manara.edu.sy/


https://manara.edu.sy/Analyzing Continuous Time Systems in the Time Domain 39/402023-2024

Causality and Stability in Continuous-Time Systems

▪ For CTLTI systems the causality property can be related to the impulse 

response of the system h(t) = 0 for all t < 0.

( ) ( ) ( ) ( ) ( ) ( ) ( )y t h t x t h x t d h x t dt t t t t t
 

-
= * = - = - 0

▪ For a CTLTI system to be stable, its impulse response must be absolute 

integrable.
( )t t



-
<  h d

▪ Example 14: Stability of a first-order continuous-time system

Evaluate the stability of the first-order CTLTI system described by the DE:

( )
( ) ( )+ =

dy t
ay t x t

dt
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The step response of the system is when x(t) = u(t)

( )
( ) ( ) ( ) -+ =  = +atdy t

ay t u t y t ce
dt a

1

y(0) = 0. (We take the initial value to be zero since the system is specified to 

be CTLTI. Non-zero initial conditions cannot be linear: Based on a zero input 

signal must produce a zero output signal).

y(0) = 0 ⇒ 0 = c + 1/a ⇒ c = -1/a 

( ) ( ) ( )-= - ats t e u t
a
1
1

( )
( ) ( ) ( )-= = = atds t
h t s t e u t

dt

( )
  -

-
= = 

ath t dt e dt
a0

1
Thus the system is stable if a > 0.
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