

CEDC403: Signals and Systems Lecture Notes 5: Fourier Analysis for Continuous Time Signals and Systems: Part A

Ramez Koudsieh, Ph.D.

Faculty of Engineering

Department of Robotics and Intelligent Systems

Manara University

Fourier Analysis for Continuous Time Signals and Systems

Chapter 4

Fourier Analysis for Continuous Time Signals and Systems 1 Introduction

- 2 Analysis of Periodic Continuous-Time Signals
- 3 Analysis of Non-Periodic Continuous-Time Signals
 - 4 Energy and Power in the Frequency Domain
 5 Transfer Function Concept
 - 6 CTLTI Systems with Periodic Input Signals
 7 CTLTI Systems with Non-Periodic Input Signals

Born 21 March 1768 in Auxerre, Kingdom of FranceDied 16 May 1830 (aged 62) in Paris, Kingdom of France

Fourier Analysis for Continuous Time Signals and Systems

https://manara.edu.sy/

1. Introduction

- Fourier analysis leads to the frequency spectrum of a continuous-time signal.
- The frequency spectrum displays the various sinusoidal components that make up the signal.
- In the frequency domain, linear systems are described by linear algebraic equations that can be easily solved, in contrast to the time-domain representation, where they are described by linear differential equations.
- A weighted summation of Sines and Cosines of different frequencies can be used to represent periodic (Fourier Series), or non-periodic (Fourier Transform) functions.

2. Analysis of Periodic Continuous-Time Signals

 We will study methods of expressing periodic continuous-time signals in two different but equivalent formats, namely the trigonometric Fourier series (TFS) and the exponential Fourier series (EFS).

Approximating a periodic signal with trigonometric functions

Fourier Analysis for Continuous Time Signals and Systems

- The approximation error $\tilde{\varepsilon}_1(t) = \tilde{x}(t) \tilde{x}^{(1)}(t) = \tilde{x}(t) b_1 \sin(\omega_0 t)$
- The best value for the coefficient b_1 would be to the value that makes the normalized average power of $\tilde{\varepsilon}_1(t)$ as small as possible.

$$P_{\varepsilon} = \frac{1}{T_0} \int_0^{T_0} [\tilde{\varepsilon}_1(t)]^2 dt = \frac{1}{T_0} \int_0^{T_0} [\tilde{x}(t) - b_1 \sin(\omega_0 t)]^2 dt, \quad \frac{dP_{\varepsilon}}{db_1} = 0 \Longrightarrow b_1 = \frac{4A}{\pi}$$
$$\tilde{x}^{(1)}(t) = \frac{4A}{\pi} \sin(\omega_0 t), \quad \tilde{\varepsilon}_1(t) = \tilde{x}(t) - \frac{4A}{\pi} \sin(\omega_0 t)$$

$$\tilde{x}^{(2)}(t) = b_1 \sin(\omega_0 t) + b_2 \sin(2\omega_0 t) \qquad \tilde{\varepsilon}_2(t) = \tilde{x}(t) - \tilde{x}^{(2)}(t)$$

$$P_{\varepsilon} = \frac{1}{T_0} \int_0^{T_0} [\tilde{\varepsilon}_2(t)]^2 dt, \ \frac{dP_{\varepsilon}}{db_{1,2}} = 0 \Rightarrow \begin{cases} b_1 = \frac{4A}{\pi} \\ b_2 = 0 \end{cases} \Rightarrow \tilde{x}^{(2)}(t) = \tilde{x}^{(1)}(t) \end{cases}$$

Fourier Analysis for Continuous Time Signals and Systems

$$\tilde{x}^{(3)}(t) = b_1 \sin(\omega_0 t) + b_2 \sin(2\omega_0 t) + b_3 \sin(3\omega_0 t)$$

$$P_{\varepsilon} = \frac{1}{T_0} \int_0^{T_0} [\tilde{\varepsilon}_3(t)]^2 dt, \quad \frac{dP_{\varepsilon}}{db_{1,2,3}} = 0 \Rightarrow \begin{cases} b_1 = \frac{4A}{\pi} \\ b_2 = 0 \\ b_3 = \frac{4A}{3\pi} \end{cases} \Rightarrow \tilde{\varepsilon}_3(t) = \tilde{x}(t) - \tilde{x}^{(3)}(t)$$

$$\tilde{x}^{(3)}(t) = \frac{4A}{\pi} \sin(\omega_0 t) + \frac{4A}{3\pi} \sin(3\omega_0 t)$$

• The normalized average power of the error signal $\tilde{\varepsilon}_3(t)$ seems to be less than that of the error $\tilde{\varepsilon}_1(t)$.

Trigonometric Fourier series (TFS)

$$\tilde{x}(t) = a_0 + a_1 \cos(\omega_0 t) + a_2 \cos(2\omega_0 t) + \dots + a_k \cos(k\omega_0 t) + \dots + b_1 \sin(\omega_0 t) + b_2 \sin(2\omega_0 t) + \dots + b_k \sin(k\omega_0 t) + \dots$$

• In a compact notation (trigonometric Fourier Series TFS of the periodic signal $\tilde{x}(t)$): $\tilde{x}(t) = x + \sum_{n=1}^{\infty} c_n \cos(h(x_n t)) + \sum_{n=1}^{\infty} b_n \sin(h(x_n t))$

$$\tilde{x}(t) = a_0 + \sum_{k=1}^{\infty} a_k \cos(k\omega_0 t) + \sum_{k=1}^{\infty} b_k \sin(k\omega_0 t)$$

where $\omega_0 = 2\pi f_0$ is the fundamental frequency in rad/s.

• The set of orthogonal basis functions: $\phi_k(t) = \cos(k\omega_0 t)$, $k = 0, 1, 2, ..., \infty$ $\psi_k(t) = \sin(k\omega_0 t)$ $k = 1, 2, ..., \infty$

$$\tilde{x}(t) = a_0 + \sum_{k=1}^{\infty} a_k \phi_k(t) + \sum_{k=1}^{\infty} b_k \psi_k(t)$$

Fourier Analysis for Continuous Time Signals and Systems

- We call the frequencies that are integer multiples of the fundamental frequency the harmonics.
- The frequencies $2\omega_0$, $3\omega_0$, ..., $k\omega_0$ are the second, the third, and the *k*-th harmonics of the fundamental frequency respectively.
- We need to determine the coefficients: a_0 , a_k , and b_k .

$$\int_{t_0}^{t_0+T_0} \cos(m\omega_0 t) \cos(k\omega_0 t) dt = \begin{cases} T_0/2, & m = k \\ 0, & m \neq k \end{cases}$$
$$\int_{t_0}^{t_0+T_0} \sin(m\omega_0 t) \sin(k\omega_0 t) dt = \begin{cases} T_0/2, & m = k \\ 0, & m \neq k \end{cases}$$
$$\int_{t_0}^{t_0+T_0} \sin(m\omega_0 t) \cos(k\omega_0 t) dt = 0$$

Fourier Analysis for Continuous Time Signals and Systems

Trigonometric Fourier series (TFS)

1. Synthesis equation:

$$\tilde{x}(t) = a_0 + \sum_{k=1}^{\infty} a_k \cos(k\omega_0 t) + \sum_{k=1}^{\infty} b_k \sin(k\omega_0 t)$$

2. Analysis equation:

$$a_{0} = \frac{1}{T_{0}} \int_{t_{0}}^{t_{0}+T_{0}} \tilde{x}(t) dt \quad (\text{dc component})$$

$$a_{k} = \frac{2}{T_{0}} \int_{t_{0}}^{t_{0}+T_{0}} \tilde{x}(t) \cos(k\omega_{0}t) dt, \quad \text{for } k = 1, 2, \cdots, \infty$$

$$b_{k} = \frac{2}{T_{0}} \int_{t_{0}}^{t_{0}+T_{0}} \tilde{x}(t) \sin(k\omega_{0}t) dt, \quad \text{for } k = 1, 2, \cdots, \infty$$

Fourier Analysis for Continuous Time Signals and Systems

Example 1: Trigonometric Fourier series of a periodic pulse train

Fourier Analysis for Continuous Time Signals and Systems

https://manara.edu.sy/

Exponential Fourier series (EFS)

$$\tilde{x}(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$$

Single-tone signals:

$$\begin{split} \tilde{x}(t) &= A\cos(\omega_{0}t + \theta) = \frac{A}{2} e^{j(\omega_{0}t + \theta)} + \frac{A}{2} e^{-j(\omega_{0}t + \theta)} = \frac{A}{2} e^{j\theta} e^{j\omega_{0}t} + \frac{A}{2} e^{-j\theta} e^{-j\omega_{0}t} \\ c_{1} &= \frac{A}{2} e^{j\theta}, \quad c_{-1} = \frac{A}{2} e^{-j\theta}, \quad \text{and} \quad c_{k} = 0 \text{ for all other } k \\ \tilde{x}(t) &= A\sin(\omega_{0}t + \theta) = \frac{A}{2} e^{j(\theta - \pi/2)} e^{j\omega_{0}t} + \frac{A}{2} e^{-j(\theta - \pi/2)} e^{-j\omega_{0}t} \\ c_{1} &= \frac{A}{2} e^{j(\theta - \pi/2)}, \quad c_{-1} = \frac{A}{2} e^{-j(\theta - \pi/2)}, \quad \text{and} \quad c_{k} = 0 \text{ for all other } k \end{split}$$

The EFS representations of the two signals are shown graphically, in the form of a line spectrum.

Fourier Analysis for Continuous Time Signals and Systems

$$\tilde{x}(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t} = a_0 + \sum_{k=1}^{\infty} a_k \cos(k\omega_0 t) + \sum_{k=1}^{\infty} b_k \sin(k\omega_0 t)$$

Fourier Analysis for Continuous Time Signals and Systems

$$c_0 = a_0$$

 $c_k + c_{-k} = a_k$ and $j(c_k - c_{-k}) = b_k$, for $k = 1, \dots, \infty$
 $c_k = \frac{1}{2}(a_k - jb_k)$ and $c_{-k} = \frac{1}{2}(a_k + jb_k)$, for $k = 1, \dots, \infty$

What if we would like to compute the EFS coefficients of a signal without first having to obtain the TFS coefficients? The exponential basis functions also form an orthogonal set.

$$\int_{t_0}^{t_0+T_0} e^{jm\omega_0 t} e^{-jk\omega_0 t} dt = \begin{cases} T_0, & m = k \\ 0, & m \neq k \end{cases}$$

Exponential Fourier series (EFS): $\tilde{x}(t) = \sum_{k=0}^{\infty} c_k e^{jk\omega_0 t}$

1. Synthesis equation:

2. Analysis equation:

$$c_k = \frac{1}{T_0} \int_{t_0}^{t_0 + T_0} \tilde{x}(t) e^{-jk\omega_0 t} dt$$

Fourier Analysis for Continuous Time Signals and Systems

https://manara.edu.sy/

- In general, the coefficients of the EFS representation of a periodic signal x(t) are complex valued.
- They can be graphed in the form of a line spectrum if each coefficient is expressed in polar complex form with its magnitude and phase: $c_k = |c_k| e^{j\theta_k}$
- Example 3: Exponential Fourier series for periodic pulse train

A line graph of the set of coefficients c_k is useful for illustrating the make-up of the signal x̃(t) in terms of its harmonics.

• Note: Values of coefficients c_k depend only on the duty cycle and not on the period T_0 .

Fourier Analysis for Continuous Time Signals and Systems

https://manara.edu.sy/

• Example 5: Spectrum of multi-tone signal $\tilde{x}(t) = \cos(2\pi [10f_0]t) + 0.8\cos(2\pi f_0 t)\cos(2\pi [10f_0]t).$

$$\tilde{x}(t) = 0.5e^{j2\pi(10f_0)t} + 0.5e^{-j2\pi(10f_0)t} + 0.2e^{j2\pi(11f_0)t} + 0.2e^{j2\pi(11f_0)t} + 0.2e^{j2\pi(9f_0)t} + 0.2e^{-j2\pi(9f_0)t} + 0.2e^{-j2\pi(9f_0)t}$$

The significant EFS coefficients for the signal $\tilde{x}(t)$ are

$$c_9 = c_{-9} = 0.2$$
, $c_{10} = c_{-10} = 0.5$, $c_{11} = c_{-11} = 0.2$

and all other coefficients are equal to zero.

Fourier Analysis for Continuous Time Signals and Systems

Existence of Fourier series

The Question: Is it always possible to determine the Fourier series coefficients?

The Dirichlet conditions (for determining if the Fourier series converges) for the periodic function \tilde{x} :

- 1. Over a single period, \tilde{x} is absolutely integrable $\int_{0}^{T_{0}} |\tilde{x}(t)| dt < \infty$
- 2. Over a single period, \tilde{x} has a finite number of maxima and minima (i.e., \tilde{x} is of bounded variation); and
- 3. Over any finite interval, \tilde{x} has a finite number of discontinuities, each of which is finite.
- If a periodic function \tilde{x} satisfies the Dirichlet conditions, then:

- 1. The Fourier series converges everywhere to \tilde{x} , except at the points of discontinuity of \tilde{x} ; and
- 2. At each point of discontinuity of $\tilde{x}(t)$, the Fourier series converges to $\frac{1}{2}[\tilde{x}(t^+) + \tilde{x}(t^-)]$, where $\tilde{x}(t^+)$ and $\tilde{x}(t^-)$ denote the values of the function \tilde{x} on the left- and right-hand sides of the discontinuity, respectively.
- 3. If $\tilde{x}(t)$ is continuous everywhere, then the series converges absolutely and uniformly.

Gibbs phenomenon

 $\tilde{x}(t)$

Fourier Analysis for Continuous Time Signals and Systems

This behavior is known as Gibbs phenomenon.

Fourier Analysis for Continuous Time Signals and Systems

 One way to explain the reason for the Gibbs phenomenon would be to link it to the inability of sinusoidal basis functions that are continuous at every point to approximate a discontinuity in the signal.

Properties of Fourier series

Linearity
$$\alpha_1 \tilde{x}(t) + \alpha_2 \tilde{y}(t) = \sum_{k=-\infty}^{\infty} [\alpha_1 c_k + \alpha_2 d_k] e^{jk\omega_0 t}$$

Symmetry of Fourier series

 $\tilde{x}(t)$: real, $\operatorname{Im}\{\tilde{x}(t)\} = 0 \Rightarrow c_{-k} = c_{k}^{*}, \quad \tilde{x}(t)$: imag, $\operatorname{Re}\{\tilde{x}(t)\} = 0 \Rightarrow c_{-k} = -c_{k}^{*}$

Fourier series for even and odd signals

• If the real-valued signal $\tilde{x}(t)$ is an even function of time, the resulting EFS spectrum c_k is real-valued for all k. $\tilde{x}(-t) = \tilde{x}(t)$, for all $t \Rightarrow \text{Im}\{c_k\} = 0$, for all k

• If the real-valued signal $\tilde{x}(t)$ has odd-symmetry, the resulting EFS spectrum is purely imaginary. $\tilde{x}(-t) = -\tilde{x}(t)$, for all $t \Rightarrow \text{Re}\{c_k\} = 0$, for all k

Time shifting
$$\tilde{x}(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t} \Rightarrow \tilde{x}(t-\tau) = \sum_{k=-\infty}^{\infty} [c_k e^{-jk\omega_0 \tau}] e^{jk\omega_0 t}$$

- 3. Analysis of Non-Periodic Continuous-Time Signals Fourier transform
- Consider the non-periodic signal x(t)
 What frequencies are contained in this signal?
- Let us construct a periodic extension $\tilde{x}(t)$ of the signal x(t) by repeating it at intervals of T_0 .

x(t)

• Since $\tilde{x}(t)$ is periodic, it can be analyzed in the frequency domain.

$$\tilde{x}(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}, \quad c_k = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} \tilde{x}(t) e^{-jk\omega_0 t} dt$$

• Realizing that $\tilde{x}(t) = x(t)$ within the span $-T_0/2 < t < T_0/2$ $\tilde{x}(t) = \sum_{k=-\infty}^{\infty} \left(\frac{1}{T_0} \int_{-T_0/2}^{T_0/2} \tilde{x}(\tau) e^{-jk(2\pi/T_0)\tau} d\tau \right) e^{jk(2\pi/T_0)t} \qquad \lim_{T_0 \to \infty} [\tilde{x}(t)] = x(t)$

Fourier Analysis for Continuous Time Signals and Systems

• As $T_0 \to \infty$ implies that $\Delta \omega = 2\pi T_0 \to 0$ (we switch to the notation $\Delta \omega$ instead of ω_0 to emphasize the infinitesimal nature of the fundamental frequency).

$$c_k = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} \tilde{x}(t) e^{-jk\Delta\omega t} dt$$

where c_k is the contribution of the complex exponential at the frequency $\omega = k\Delta\omega$. Each individual coefficient c_k is very small in magnitude, and in the limit we have $c_k \rightarrow 0$ when $T_0 \rightarrow \infty$. In addition, successive harmonics $k\Delta\omega$ are very close to each other due to infinitesimally small $\Delta\omega$.

$$c_k T_0 = \int_{-T_0/2}^{T_0/2} \tilde{x}(t) e^{-jk\Delta\omega t} dt$$

$$X(\omega) = \lim_{T_0 \to \infty} [c_k T_0] = \lim_{T_0 \to \infty} \int_{-T_0/2}^{T_0/2} x(t) e^{-jk\Delta\omega t} dt = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$

 $X(\omega)$ is the Fourier transform of the non-periodic signal x(t).

Fourier transform for continuous-time signals:

1. Synthesis equation: (Inverse transform)

$$x(t) = \mathcal{F}^{-1}\{X(\omega)\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$
$$x(t) = \mathcal{F}^{-1}\{X(f)\} = \int_{-\infty}^{\infty} X(f) e^{j2\pi f t} df \quad \text{(using } f$$

2. Analysis equation: (Forward transform)

$$X(\omega) = \mathcal{F}\{x(t)\} = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$
$$X(f) = \mathcal{F}\{x(t)\} = \int_{-\infty}^{\infty} x(t) e^{-j2\pi f t} dt \qquad \text{(using } f\text{)}$$

Existence of Fourier transform

- The FT integral may or may not converge for a given signal x(t).
- The Dirichlet conditions (for determining if the Fourier transform converges) for the function x:
 - 1. The function x is absolutely integrable $\int_{-\infty}^{\infty} |x(t)| dt < \infty$
 - 2. On any finite interval *x* has a finite number of maxima and minima (i.e. *x* is of bounded variation); and
 - 3. On any finite interval, *x* has a finite number of discontinuities, and each discontinuity is itself finite.
- All energy signals have Fourier transforms.

Fourier transforms of some signals

Example 6: Fourier transform of a rectangular pulse

Effects of changing the pulse width on the frequency spectrum:

Fourier Analysis for Continuous Time Signals and Systems

https://manara.edu.sy/

2023-2024

30/38

Example 7: Transform of the unit-impulse function

$$\mathcal{F}\{\delta(t)\} = \int_{-\infty}^{\infty} \delta(t) e^{-j\omega t} dt = \int_{-\infty}^{\infty} \delta(t) dt = 1$$

$$q(t) = \frac{1}{a} \prod\left(\frac{t}{a}\right) \Rightarrow \delta(t) = \lim_{a \to 0} q(t)$$

$$Q(f) = \mathcal{F}\{q(t)\} = \operatorname{sinc}(fa)$$

$$\mathcal{F}\{\delta(t)\} = \lim_{a \to 0} \{Q(f)\} = \lim_{a \to 0} \{\operatorname{sinc}(fa)\} = 1$$

Fourier Analysis for Continuous Time Signals and Systems

https://manara.edu.sy/

Example 8: Fourier transform of a right-sided exponential signal

$$\begin{aligned} x(t) &= e^{-at}u(t), a > 0 \\ X(\omega) &= \int_{-\infty}^{\infty} e^{-at} u(t)e^{-j\omega t}dt = \int_{0}^{\infty} e^{-at} e^{-j\omega t}dt = \frac{1}{a+j\omega} \end{aligned}$$

$$\begin{aligned} x(t) &= \frac{1}{1/e} \\ |X(\omega)| &= \left|\frac{1}{a+j\omega}\right| = \frac{1}{\sqrt{a^2 + \omega^2}}, \quad \theta(\omega) = -\tan^{-1}(\omega/a) \end{aligned}$$

Fourier Analysis for Continuous Time Signals and Systems

https://manara.edu.sy/

Example 9: Fourier transform of a two-sided exponential signal

Fourier Analysis for Continuous Time Signals and Systems

https://manara.edu.sy/

• Example 10: Fourier transform of a triangular pulse

$$x(t) = A\Lambda\left(\frac{t}{\tau}\right) = \begin{cases} A + At/\tau, & -\tau < t < 0\\ A - At/\tau, & 0 < t < \tau\\ 0, & |t| \ge \tau \end{cases}$$

$$X(\omega) = \int_{-\tau}^{0} (A + At/\tau) e^{-j\omega t} dt + \int_{0}^{\tau} (A - At/\tau) e^{-j\omega t} dt = \frac{2A}{\omega^{2}\tau} [1 - \cos(\omega\tau)]$$

$$\cdot \quad (\omega\tau) \qquad \sin(\omega\tau/2) \qquad 2 \qquad (\omega\tau) \qquad X(f)$$

$$\operatorname{sinc}\left(\frac{\omega\tau}{2\pi}\right) = \frac{\operatorname{sin}(\omega\tau/2)}{\omega\tau/2} = \frac{2}{\omega\tau} \sin\left(\frac{\omega\tau}{2}\right)$$

$$X(\omega) = A\tau \operatorname{sinc}^{2}\left(\frac{\omega\tau}{2\pi}\right)$$

$$X(f) = A\tau \operatorname{sinc}^{2}(f\tau)$$

$$f$$

$$\frac{4}{\tau} - \frac{3}{\tau} - \frac{2}{\tau} - \frac{1}{\tau}$$

$$\frac{1}{\tau} - \frac{2}{\tau} - \frac{3}{\tau} - \frac{4}{\tau}$$

Fourier Analysis for Continuous Time Signals and Systems

https://manara.edu.sy/

2023-2024

x(t)

 $-\tau$

au

The Generalized Fourier Transform

- There are some important practical signals that do not have Fourier transforms in the strict sense.
- Because these signals are so important, the Fourier transform has been "generalized" to include them.
- Example 11: Fourier transform of constant-amplitude signal

x(t) = A, all t

$$X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt = \int_{-\infty}^{\infty} A e^{-j\omega t} dt = A \int_{-\infty}^{\infty} e^{-j\omega t} dt$$

The integral does not converge. Therefore, the Fourier transform does not exist. Let us define an intermediate signal $x_a(t) = Ae^{-a|t|}$, a > 0.

$$X_{a}(\omega) = A \frac{2a}{a^{2} + \omega^{2}} \qquad \text{For } \omega \neq 0, \ \lim_{a \to 0} \left[A \frac{2a}{a^{2} + \omega^{2}} \right] = 0$$
$$\int_{-\infty}^{\infty} A \frac{2a}{a^{2} + \omega^{2}} d\omega = 2\pi A$$

The area under the function is $2\pi A$ and is independent of the value of *a*. Therefore the Fourier transform of the constant *A* is a function that is zero for $\omega \neq 0$ and has an area of $2\pi A$. Therefor $\mathcal{F}(A) = 2\pi A \delta(\omega)$

Fourier Analysis for Continuous Time Signals and Systems

The two integrals cannot be evaluated. Instead, we will define an intermediate signal p(t) as:

Fourier Analysis for Continuous Time Signals and Systems

https://manara.edu.sy/

Fourier Analysis for Continuous Time Signals and Systems

https://manara.edu.sy/