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Jean-Baptiste Joseph Fourier 
(1768-1830)

Born 21 March 1768 in Auxerre, Kingdom of France

Died 16 May 1830 (aged 62) in Paris, Kingdom of France
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1. Introduction

▪ A weighted summation of Sines and Cosines of different frequencies can be 

used to represent periodic (Fourier Series), or non-periodic (Fourier 

Transform) functions.

▪ Fourier analysis leads to the frequency spectrum of a continuous-time signal. 

▪ The frequency spectrum displays the various sinusoidal components that 

make up the signal.

▪ In the frequency domain, linear systems are described by linear algebraic 

equations that can be easily solved, in contrast to the time-domain 

representation, where they are described by linear differential equations.
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2. Analysis of Periodic Continuous-Time Signals

▪ We will study methods of expressing periodic continuous-time signals in two 

different but equivalent formats, namely the trigonometric Fourier series 

(TFS) and the exponential Fourier series (EFS).

Approximating a periodic signal with trigonometric functions

෤x (1)(t) = b1sin(w0t) ෤x (3)(t) = b1sin(w0t) + b2sin(2w0t) + b3sin(3w0t) 
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▪ The approximation error ෤e1(t) = ෤x(t) - ෤x (1)(t) = ෤x(t) - b1sin(w0t)

▪ The best value for the coefficient b1 would be to the value that makes the 

normalized average power of ෤e1(t) as small as possible.
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෤x (2)(t) = b1sin(w0t) + b2sin(2w0t) ෤e2(t) = ෤x(t) - ෤x (2)(t)
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෤x (3)(t) = b1sin(w0t) + b2sin(2w0t) + b3sin(3w0t) 

⇒ ෤e3(t) = ෤x(t) - ෤x (3)(t)[ ( )] ,
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▪ The normalized average power of the error signal ෤e3(t) seems to be less than 

that of the error ෤e1(t).
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Trigonometric Fourier series (TFS)

෤x (t) = a0 + a1cos(w0t) + a2cos(2w0t) + ... + akcos(kw0t) + ...

+ b1sin(w0t) + b2sin(2w0t) + ... + bksin(kw0t) + ...

( ) cos( ) sin( )0 0 0
1 1
k k

k k

x t a a k t b k tw w
 

= =

= + + 

where w0 = 2f0 is the fundamental frequency in rad/s.

▪ In a compact notation (trigonometric Fourier Series TFS of the periodic 

signal ෤x(t)):

▪ The set of orthogonal basis functions: fk(t) = cos(kw0t), k = 0, 1, 2, ..., ∞

yk(t) = sin(kw0t) k = 1, 2, ..., ∞
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▪ We call the frequencies that are integer multiples of the fundamental 

frequency the harmonics.

▪ The frequencies 2w0, 3w0, ..., kw0 are the second, the third, and the k-th 

harmonics of the fundamental frequency respectively.
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▪ We need to determine the coefficients: a0, ak, and bk.
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Trigonometric Fourier series (TFS)

1. Synthesis equation:
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2. Analysis equation:

https://manara.edu.sy/


https://manara.edu.sy/Fourier Analysis for Continuous Time Signals and Systems 11/382023-2024

▪ Example 1: Trigonometric Fourier series of a periodic pulse train
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▪ Example 2: Periodic pulse train
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Exponential Fourier series (EFS)
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▪ The EFS representations of the two signals are shown graphically, in the 

form of a line spectrum.
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෤x (t) = Acos (w0t + ) ෤x (t) = Asin (w0t + )

The general case:
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▪ What if we would like to compute the EFS coefficients of a signal without first 

having to obtain the TFS coefficients? The exponential basis functions also 

form an orthogonal set.
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Exponential Fourier series (EFS):

1. Synthesis equation: ( ) 0jk t
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2. Analysis equation:
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▪ In general, the coefficients of the EFS representation of a periodic signal ෤x (t) 
are complex valued.

▪ They can be graphed in the form of a line spectrum if each coefficient is 

expressed in polar complex form with its magnitude and phase: kj
k kc c e 

=

▪ Example 3: Exponential Fourier series for periodic pulse train
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▪ A line graph of the set of coefficients ck is useful for illustrating the make-up of 

the signal ෤x (t) in terms of its harmonics.
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▪ Example 4: Effects of duty cycle on the spectrum

The duty cycle of a pulse train is defined as the 

ratio of the pulse-width to the period, d = t/T0
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▪ Note: Values of coefficients ck depend only on the duty cycle and not on the 

period T0.
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▪ Example 5: Spectrum of multi-tone signal

෤x (t) = cos(2[10f0]t) + 0.8cos(2f0t)cos(2[10f0]t).
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The significant EFS coefficients for the signal ෤x (t) are

c9 = c-9 = 0.2, c10 = c-10 = 0.5,    c11 = c-11 = 0.2

and all other coefficients are equal to zero.
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Existence of Fourier series

▪ The Question: Is it always possible to determine the Fourier series 

coefficients?

The Dirichlet conditions (for determining if the Fourier series converges) for 

the periodic function ෤x:

1. Over a single period, ෤x is absolutely integrable

2. Over a single period, ෤x has a finite number of maxima and minima (i.e., ෤x is 

of bounded variation); and

3. Over any finite interval, ෤x has a finite number of discontinuities, each of 

which is finite.

( )
0

0

T
x t dt  

▪ If a periodic function ෤x satisfies the Dirichlet conditions, then:
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1. The Fourier series converges everywhere to ෤x, except at the points of 

discontinuity of ෤x; and

2. At each point of discontinuity of ෤x(t), the Fourier series converges to 

½[෤x(t+) + ෤x(t-)], where ෤x(t+) and ෤x(t-) denote the values of the function ෤x on 

the left- and right-hand sides of the discontinuity, respectively.

3. If ෤x(t) is continuous everywhere, then the series converges absolutely and 

uniformly.

Gibbs phenomenon
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▪ This behavior is known as Gibbs phenomenon.
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Properties of Fourier series

Linearity ( ) ( ) [ ] 0
1 2 1 2

jk t
k k
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x t y t c d e w   
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Symmetry of Fourier series

▪ One way to explain the reason for the Gibbs phenomenon would be to link it to 

the inability of sinusoidal basis functions that are continuous at every point to 

approximate a discontinuity in the signal.

Fourier series for even and odd signals

( ) ( ), for all  Im{ } , for all kx t x t t c k- =  = 0
▪ If the real-valued signal ෤x(t) is an even function of time, the resulting EFS 

spectrum ck is real-valued for all k.
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▪ If the real-valued signal ෤x(t) has odd-symmetry, the resulting EFS spectrum is 

purely imaginary. ( ) ( ), for all  Re{ } , for all kx t x t t c k- = -  = 0

Time shifting ( ) ( ) [ ]0 0 0jk t jk jk t
k k

k k

x t c e x t c e ew w t wt
 

-

=- =-

=  - = 

3. Analysis of Non-Periodic Continuous-Time Signals

Fourier transform

▪ Consider the non-periodic signal x(t)

What frequencies are contained in this signal?

▪ Let us construct a periodic extension ෤x(t) of the signal 

x(t) by repeating it at intervals of T0.
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▪ Since ෤x(t) is periodic, it can be analyzed in the frequency domain.
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▪ Realizing that ෤x(t) = x(t) within the span -T0/2  t  T0/2
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▪ As T0 → ∞ implies that Dw = 2/T0 → 0 (we switch to the notation Δw instead 

of w0 to emphasize the infinitesimal nature of the fundamental frequency). 
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( ) lim [ ] lim ( ) ( )
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X(w) is the Fourier transform of the non-periodic signal x(t).
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where ck is the contribution of the complex exponential at the frequency 

w = k Dw. Each individual coefficient ck is very small in magnitude, and in the 

limit we have ck → 0 when T0 → ∞. In addition, successive harmonics k Dw are 

very close to each other due to infinitesimally small Dw.
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Fourier transform for continuous-time signals:

1. Synthesis equation: (Inverse transform)

2. Analysis equation: (Forward transform)

( ) { ( )} ( )1 1
2

j tx t X X e dww w w


-

-
= = F

( ) { ( )} ( ) j tX x t x t e dtww
 -
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( ) { ( )} ( )1 2j ftx t X f X f e df-

-
= = F

( ) { ( )} ( ) j ftX f x t x t e dt - 

-
= = F

(using f)

(using f)
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Existence of Fourier transform

▪ The FT integral may or may not converge for a given signal x(t).

▪ The Dirichlet conditions (for determining if the Fourier transform converges) 

for the function x :

1. The function x is absolutely integrable

2. On any finite interval x has a finite number of maxima and minima (i.e. 

x is of bounded variation); and

3. On any finite interval, x has a finite number of discontinuities, and each 

discontinuity is itself finite.

( )x t dt


-
 

▪ All energy signals have Fourier transforms.
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Fourier transforms of some signals
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Example 6: Fourier transform of a rectangular pulse

▪ Effects of changing the pulse width on the frequency spectrum:
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Example 7: Transform of the unit-impulse function

{ ( )} ( ) ( ) 1j tt t e dt t dtw  
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Example 8: Fourier transform of a right-sided exponential signal
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▪ Example 9: Fourier transform of a two-sided exponential signal
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t t

t t
t

t

+ -  
 =  = -    

   

▪ Example 10: Fourier transform of a triangular pulse

( ) ( / ) ( / ) [1 cos( )]
0

20

2j t j t A
X A At e dt A At e dt

tw w

t
w t t wt

w t

- -

-
= + + - = - 

sin( / )
sinc sin

/

2 2
2 2 2
wt wt wt

 wt wt
   = =   
   

( ) sinc2
2

X A
wt

w t


 =  
 

( )( ) sinc2X f A ft t=
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The Generalized Fourier Transform

▪ There are some important practical signals that do not have Fourier 

transforms in the strict sense. 

▪ Because these signals are so important, the Fourier transform has been 

“generalized” to include them.

▪ Example 11: Fourier transform of constant-amplitude signal

x(t) = A, all t

( ) ( ) j t j t j tX x t e dt Ae dt A e dtw w ww
  - - -

- - -
= = =  

The integral does not converge. Therefore, the Fourier transform does not 

exist. Let us define an intermediate signal xa(t) = Ae-a|t| ,a  0. 
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2 2

2
2

a
A d A
a

w 
w



-
=

+

( ) 2 2

2
a

a
X A

a
w

w
=

+
For w  0, lim 2 20

2
0

a

a
A
a w→

  =
  +

The area under the function is 2A and is independent of the value of a. 

Therefore the Fourier transform of the constant A is a function that is zero 

for w  0 and has an area of 2A. Therefor F(A) = 2A(w)

 ,
( ) sgn( )

,

t
x t t

t
- 

= =


1 0
1 0

( ) ( ) ( )
0

0
1 1j t j tX e dt e dtw ww

- -

-
= - + 

▪ Example 12: Fourier transform of the signum function
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The two integrals cannot be evaluated. Instead, we will define an 

intermediate signal p(t) as:

,
( ) , where 0

,

0

0

at

at

e t
p t a

e t-

- 
= 



( ) ( ) ( )
0

2 20

2at j t at j t j
P e e dt e e dt

a
w w w

w
w

- - -

-

-
= - + =

+ 

( ) {sgn( )} lim 2 20

2 2
a

j
X t

ja

w
w

ww→

-
= = =

+
F
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