Ex. 1. The spring has a stiffness of $k=800 \mathrm{~N} / \mathrm{m}$ and an unstretched length of 200 mm . Determine the force in cables $B C$ and $B D$ when the spring is held in the position shown.

Ex. 2. Determine the mass of each of the two cylinders if they cause a sag of $s=0.5 \mathrm{~m}$ when suspended from the rings at A and B.

Example 3. The thin ring can be adjusted vertically between three equally long cables from which the 100-kg chandelier is suspended.
(1) If the ring remains in the horizontal plane and $z=600 \mathrm{~mm}$, determine the tension in each cable.
(2) If the ring remains in the horizontal plane and the tension in each cable is not allowed to exceed 1 kN , determine the smallest allowable distance z required for equilibrium.

Example 4. The $50-\mathrm{kg}$ pot is supported from A by the three cables.
(1) Determine the force acting in each cable for equilibrium.

Take $d=2.5 \mathrm{~m}$.
(2) Determine the height d of cable AB so that the force in cables $A D$ and $A C$ is one-half as great as the force in cable $A B$. What is the force in each cable for this case?

