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Free Response of a SDOF system
The equation of motion of a SDOF system has been written as follows:

( ) ( ) ( ) ( )mu t cu t pku tt+ + =

which is a non-homogeneous second-order linear ordinary differential equation with constant coefficients.

The solution of this equation depends on the dynamic loading  𝑝(𝑡) and on the initial conditions.

Forced response is the solution of the equation, with 𝑝(𝑡)  0. 

Free response is the solution of the homogeneous equation, with 𝑝(𝑡) = 0.

It describes the motion of a SDOF oscillator with non-zero initial conditions.
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The free response is the solution of the homogeneous differential equation, with 𝑝(𝑡) = 0.

It describes the motion of a SDOF oscillator 
with non-zero initial conditions.

( ) ( ) ( ) 0mu t cu t ku t+ + =

0 0and(0) (0)u u u u= = u0
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0uFirst of all we write the equation of 

motion in its canonical form.

( ) ( ) ( ) 0
c k

u t u t u t
m m

+ + = Putting: 2 and 2
k c

m m
 = =

The canonical form of the equation of motion becomes
2( ) 2 ( ) ( ) 0u t u t u t + + =

 : is the angular frequency [rad/sec].   التردد أو التواتر الزاوي

c : damping factor [N.sec/m] or [kg/sec]  معامل التخميد        : damping ration [?]  نسبة التخميد
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Characteristic equation

2

0 0( ) 2 ( ) ( ) 0, with and(0) (0)u u u u ut u t u t  = =+ + =

A particular solution for equation can be found considering that the variables 𝑢, ሶ𝑢 & ሷ𝑢 , are in some way 
linearly dependent for their sum to be zero. The exponential function has precisely that property and a 
solution could therefore be

( ) stu t Ce=

The constant 𝐶  has dimension [L] and 𝑠𝑡  has no dimension. Hence, constant s has dimension T −1. 
Substituting this solution into the canonical equation we have

( )2 22 0sts s Ce + + =

This equation is valid for all values of 𝑡, if
2 22 0s s + + =

which is known as the characteristic equation. It is an Algebraic Equation
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Resolving the second degree Algebraic characteristic equation

2 2

1 2an1 1d, .s s     = − + − = − − −

We have seen in the preceding lectures that harmonic motion results when 𝜉 =  0.

In that case, the roots 𝑠1 and 𝑠2 were the imaginary numbers: 𝑖𝜔.

For non-zero damping, three types of motion are possible depending on the amount of damping present 
in the system or depending on the value of (𝜉2 − 1) under the radical. The motions are:

1. Oscillatory when: 0<ξ <1. Then s1 and s2 are complex conjugates;
2. Non-oscillatory when: ξ =1. Then s1 and s2 are real and equal;
3. Non-oscillatory when: ξ >1. Then s1 and s2 are real and distinct.

Bifurcation from oscillatory to non-oscillatory motion takes place when ξ = 1.

cr 2 2 / 2C m k km = = =

For this reason, the damping coefficient C corresponding to this case is called: critical damping:  Ccr.

Its expression is obtained from equation: 
𝐶

𝑚
= 2𝜉𝜔 , putting 𝜉 = 1, to get:

The ratio: 𝜉  = 𝐶/𝐶𝑐𝑟, is called ratio of critical damping, or shortly, damping ratio.

2 22 0s s + + = gives two roots: 
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Free Damped SDOF Systems
Underdamped Case

When  < 1 the systems is underdamped. The two roots of the Characteristic equation can be written as 

1 2an, dn d n ds i s i   = − + = − −

Where 𝜔𝑑 denoting the damped circular natural frequency, الترددالزاوي المخمد , is given by

21d n  = −

Like 𝜔𝑑 , this is expressed in (rad/sec). The corresponding damped period الدور المخمد , is

22 / 1nd
d

T T = = −

With the help of these definitions and Euler’s formula, the general solution of the motion equation can be 
expressed as:

1 2( ) ( cos sin )nt

d du t e A t A t  −= +
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As in the undamped case, the two coefficients 𝐴1 & 𝐴2, of the general solution can be determined 
by the two initial conditions

0 0and(0)   (0)u u u u= =

To get

0 0
0( ) ( cos sin )nt n

d d
d

u u
u t e u t t 

 
− +

= +

This equation in turn can be rewritten  in the phase form 

( ) cos( )nt

du t Ue t  −= −
Where

2

2 0 0 0 0
0

0
and tann n

d d

u u u u
U u u

 
 

 + +
= + = 

 

Free Damped SDOF Systems
Underdamped Case
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0 0
0( ) ( cos sin )nt n

d d
d

u u
u t e u t t 

 
− +

= +

( ) cos( )nt

du t Ue t  −= −

Free Damped SDOF Oscillator
Underdamped Response Plots
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Logarithmic decrement
Damping in real structures is generally not of the simple viscous type as analyzed above. But it is 
often expressed as equivalent viscous damping obtained from free vibration response tests.

( ) cos( )nt

du t Ue t  −= −

A measure of damping is the reduction of the amplitude of the response after one cycle of free response. 
Figure below shows displacements 𝑢(𝑡) and 𝑢(𝑡 + 𝑇𝐷) measured at the ends of a one-cycle interval 
during free vibration. The ratio of these two displacements gives

( )

cos( )( )

( ) cos[ ( ) ]

n

n d

t

d

t T

d d d

Ue tu t

u t T Ue t T





 

 

−

− +

−
=

+ + −

but this can be simplified because
cos[ ( ) ] cos( )

cos( 2 ) cos( )

d d d d d

d d

t T t T

t t

    

    

+ − = − +

= − + = −

Then the ratio of these two displacements becomes

( )

( )

( )

n

n d

n d

t
T

t T

d

u t e
e

u t T e






−

− +
= =

+
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Taking the logarithm of both sides of we obtain

where the quantity 𝛿 is called logarithmic decrement.

For small values of damping, 𝜉2 is negligible compared to unity and an approximation of 𝛿 is given by

𝛿 ≈ 2𝜋𝜉.

This is used to estimate global damping of a structure from two successive measured displacements after the 
structure is released from an initial displaced configuration.

Generally, 𝜉 << 1 and the displacement 𝑢 (𝑡) is very close to 𝑢(𝑡 + 𝑇𝐷) making the 
estimate very imprecise.

( )

( )
n dT

d

u t
e

u t T

=
+

2

( ) 2
ln 2

( ) 1

n
n d

d
d

u t
T

u t T

 
   


 = = =

+ −

Logarithmic decrement
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To increase the precision of this estimate, the 
two maximums are taken j  cycles apart.

Let 𝑢𝑖 and 𝑢𝑖+𝑗be the amplitudes at time 𝑡𝑖 and 𝑡𝑖 
+  𝑗𝑇𝐷 

, 𝑗 being an integer. The ratio (𝑢𝑖/𝑢𝑖+𝑗) can 
be expressed as

δ ≈ 2πξ.

which, accounting for above results, becomes

Taking the logarithm of both sides:

Finally the approximation value of the viscous damping ratio is given by

( )

( )
n dT

d

u t
e

u t T

=
+

( )11 2

1 2 3

.... n d n d
ji j T j T ji i i i

i j i i i i j

uu u u u
e e e

u u u u u

  + −+ +

+ + + + +

= = = =

ji

i j
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u
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+

=
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i j

u

j u
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The number of cycles necessary to reduce the amplitude by 50% is obtained by writing:  
𝑢𝑖

𝑢𝑖+𝑗
= 2, 

in this equation to get This relationship is plotted here. 

Note that, a useful approximation is:   𝑗(50%) ≈ 10/𝜉(%). 

1
ln

2 2
i

i j

u
uj


  +
=

0.11(50%)j


=

During a free vibration test, it is easy to count the number of cycles 
it takes to reduce the displacement amplitude by 50% and obtain 
the percent damping ratio.

Hence, if it takes two cycles to reduce the displacement amplitude 

by 50%, the damping ratio ξ is equal to 10/2 = 5%. The damping 
ratio ξ would be approximately equal to 10/1 = 10% , if it takes one 
cycle to reduce the displacement amplitude by 50% .
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EXAMPLE. A one-story structure being tested in a laboratory can be idealized by an infinitely rigid beam 

supported by two columns. The columns can be considered flexible laterally but rigid axially. The mass 

of the columns is negligible when compared to the total mass m =1941kg , which is concentrated at the 

level of the roof. To determine the dynamic properties of the structure, a free vibration test is performed 

by moving the roof by 20 mm with a cable and a winch. The cable is suddenly cut to set the structure in 

free vibration. The maximum displacement is 15 mm after one complete cycle which takes place in 0.2 s.

Compute the damping ratio ξ, the damping coefficient c, the lateral stiffness of the structure, and the 

amplitude of the motion after 10 cycles.

Damping ratio ξ :

Damping coefficient C :

lateral stiffness 

amplitude after 10 cycles

𝜉 =
1

2𝜋
ln

20

15
= 0.0458

𝑇𝐷 = Τ2𝜋 𝜔𝐷 = 0.2 𝑠 ⇒ 𝜔𝐷 = Τ2𝜋 0.2

𝜔 =
𝜔𝑑

1 − 𝜉2
=

Τ2𝜋 0.2

1 − 0.04582
= 31.45 𝑟𝑎𝑑/𝑠

𝐶 = 2𝜉𝑚𝜔 = 2 × 0.0458 × 1941 × 31.45 = 5592𝑁𝑠/𝑚

𝐾 = 𝑚𝜔2 = 1941 × 31.452 = 1920 𝑘𝑁/𝑚

𝑢10 = 𝑢0

𝑢1

𝑢0

10

= 20
15

20

10

= 1.13 𝑚𝑚
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Ex. The roof of the building shown in the figure is displaced by 6mm 

by applying a force of 90 kN and released instantaneously in a free 

vibration test.

The maximum displacement is 4.8mm after one complete cycle 

which takes place in 1.2 s.

Compute 

(a) the damping ratio 

(b) the effective mass of the structure,

(c) the angular frequency,  and 

(d) the number of cycles necessary to reduce the displacement to 

5% of the maximum displacement at the initial release.

Ex. Consider the transverse vibration of a bridge structure. For the fundamental frequency it can be 

considered as a single degree of freedom system. The bridge is deflected at midspan (by winching the bridge 

down) and suddenly released. After the initial disturbance the vibration was found to decay exponentially from 

an amplitude of 10 mm to 5.8 mm in three cycles with a frequency of 1.62 Hz. The test was repeated with a 

vehicle of mass 40 000 kg at mid-span, and the frequency of free vibration was measured to be 1.54 Hz.

Find the damping ratio of the structure, the effective mass, and the effective stiffness, and the damping ratio of 

the structure.
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Ex. A free vibration test is conducted on an empty elevated water tank such as the one in figure. A 

cable attached to the tank applies a lateral (horizontal) force of 75 KN and pulls the tank 

horizontally by 5 cm. The cable is suddenly cut and the resulting free vibration is recorded.

At the end of four complete cycles, the time is 2.0 sec and the amplitude is 2.5 cm. From these data 

compute the following:

(a) The damping ratio, ;

(b) The natural period of undamped vibration, Tn;

(c) The stiffness, k;

(d) The effective mass of the empty tank, m;

(e) The damping coefficient, c; and

(f) The number of cycles, j, required for the displacement amplitude to decrease to 0.5 cm.

m
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