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Newton Raphson Method

® Given an initial guess of the root X Newton-Raphson method uses information about the

function and its derivative at that point to find a better guess of the root.

® Based on Taylor series expansion:

f (X

The rootis the value of x.

1+1

AX?

)= f(x)+ f'(x)Ax+ f"(x)——+OAX’

2!
whenf(x.,,) =0

1+1

Rearranging,

0= £06)+ £ 0 X9

1+1

_ %)
F'(x)

Newton-Raphson formula

v
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Newton Raphson Method o

6)liodl

* Graphical Depiction: If the initial guess at the root is x,, then a tangent to the function of x.
thatis f'(x,) is extrapolated down to the x-axis to provide an estimate of the root at x, .

.

f) 4

S ‘(,\‘i)

A convenient method for functions whose derivatives can be evaluated analytically.
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* Example: Use the Newton-Raphson method to estimate the root of f(x) = e*—x,
employing an initial guess of Xy =0

* Solution: The first derivative of the function can be evaluated as: f(x) = -e*— 1 which

e Yi-x;

e %i-1

Starting with an initial guess of Xy =0, the iterative equation can be applied to compute:

can be substituted along with the original function: x;, 1 = Xx; —
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° j x £ (%) E, o
a 0.000000000 100 0.567143290
1 0500000000 1.8 0.067143290
2 0.566311003 0147 0.000832287
3 0567143165 0.0000221 0.000000125
4 0567143290 <1078 0.000000000
.g
: f(xi)) |g(%)| Et
[ X: (X ’(x; ;
0| 0.0000 | 0.50000 - - 100
110.50000 | —0.6321 | —1.3679 | 0.4621
§ 210.5379 | 0.0461 | —1.5840 | —0.0291
,;f: 310.5670 | 0.0002 | —1.5672 | —0.0002
g 410.5671 | 0.0000 |—-1.5671 | —0.0000
2
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¢ Pitfalls of Newton Raphson Method ==
S 5)
] Assumptions: f(x), f'(x), x, are available,
f'(x,) =0
5 Newton's Method new estimate:
: f (X,
Xist = X — f'(()l(l))
Problem :
f'(x:)Is not available,
: or difficult to obtain analytically.
§ It may not be convenient for functions whose derivatives cannot be evaluated analytically.

https://manara.edu.sy/


https://manara.edu.sy/

[

<
o
Fhe Secant Method z
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o T
" A slight variation of Newton’s method for functions whose derivatives are difficult to
evaluate. For these cases the derivative can be approximated by a backward finite divided
difference.
:
o
z
2
>
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: The Secant Method - Derivation =
g EI_IL'I_U..”
Newton's Method
fx) f(x
Xi+1 — XI - ()g) (1)
; f(x)
T f(x)
¥ [X" fx )] Approximate the derivative
f I(Xi) _ f (Xi) —f (Xi—l) (2)
Xi = X4
foa) Substituting Equation (2) into Equation
0 .
] LI . -~ X (1) gives the Secant method
% X =X — f(Xi)(Xi B Xi—l)
T Figure 1 Geometrical illustration of the Newton-Raphson method. . | f (Xi) — f (Xi—l)
£
2
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: The Secant Method - Derivation =
g ojliaJ __|
The secant method can also be derived from geometry:
i) ) The Geometric Similar Triangles
AB B DC
z AE DE
T f(x)) B
o can be written as
f0) | F(x)
Xi —Xin X —Xiyg
_ C
fxia) On rearranging, the secant method is given as
E D A -

ﬁ. Xisg X Xi =X . f (Xl )(Xl B Xi—l)
g Xy = Xj — f f
T (Xi) | (Xi—l)
E Figure 2 Geometrical representation of the Secant method.
3
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* Example: Use the secant method to estimate the root of f(x) = e*— X, start with initial

estimatesof x_;y = 0andx, = 1.0

* Solution:

https://manara.edu.sy/ Slide 12
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Solution. Recall that the true root is 0.56714329. . . .

[

g First iteration: 5 _
g claols
< x.1=0 f(x_;) = 1.00000 0]'-1:-:'-"
xp=1 f(xp) = —0.63212
—0.63212(0 - 1
x=1- ( ) = 0.61270 e, = 8.0%
1 — (-0.63212)
Second iteration:
5 xp=1 f(xp) = —0.63212
T x; = 0.61270 f(x;) = =0.07081
[a2]
(Note that both estimates are now on the same side of the root.)
—0.07081(1 — 0.61270)
= 0.61270 — = (0.56384 - = 0.58%
e ~0.63212 — (—0.07081) K ‘
Third iteration:
@ x; = 0.61270 f(x;) = =0.07081
f x, =0.56384  f(x,) = 0.00518
g 0.00518(0.61270 — 0.56384)
3 = 0.56384 — = 0.56717 -, = 0.0048 %
g & —0.07081 — (—0.00518) ‘ ‘
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Problem Statement: Determine the highest real root of:

f(x) =—6+17.5x —11.6x% + 2.1x> (5 digits)

a) Graphically.

b) Fixed Point iteration method (Five iterations, x,=3).
c) Newton Raphson method (Five iterations, x,=3).

d) Secant method (Five iterations, x_=3, x,=4).

Compute the approximate percent relative errors fOI‘yOUI' solutions.

https://manara.edu.sy/ Slide 14


https://manara.edu.sy/

3 o)Ll
E: Linear Algebraic Equations
Part-01
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Noncomputer Methods for Solving System of Equations

" For small number of equations (n < 3) linear equations can be solved readily by simple techniques

such as “method of elimination.”
® |inear algebra provides the tools to solve such systems of linear equations.

® There are many ways to solve a system of linear equations:

—_—

® Graphical Methods.

® Cramer’s Rule. ~— Forn<3

® Method of Elimination.

u Nowadays, easy access to computers makes the solution of Iarge sets of linear algebraic equations

possible and practical.
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s ical Method
Graphical Methods )
L 0)lioall
8 R A, T L T
" Consider a set of two equations:
ay1X1 + a12%; = by
Az1X1 + Ay2X5 = by
z " Plot these on the Cartesian coordinate system with axes x, and x,.
T %
. 2
o Solve for (x;) .
_ 11 by — (dl :
X, =—|—|x;+— = x, = (slope)x; + intercept
aq2 12 -
a21> b, ! X4
xz = — |\ — x1 + — I >
(azz A2 ,/ AN
%
e
<
i
b
£
=]
2
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Graphical Methods o
? - r = @
< 0)lioall
° FFFFFFFFFFF
" For n=3, each equation will be a plane on a 3D coordinate system. Solution is the point where these
planes intersect.
3
(1]
I
&
%
p
<
E
-5 - - - -
£ ® Forn>3, graphlcal solution is not practical.
2
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Graphical Methods [>
* For example : solve
3x; + 2%, =18

- X+ 2%, =2

 The solution is the intersection of the
two lines at x,=4 and x,=3.

* This result can be checked by substituting
these values into the original equations
to yield

3(4)+2(3)=18
~(4)+2(3) =2
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g &)liadl
o [T r——
* Cramer’s rule is another solution technique that is best suited to small numbers of equations.
® This rule states that each unknown in a system of linear algebraic equations may be
expressed as a fraction of two determinants with denominator D and with the numerator
s obtained from D by replacing the column of coefficients of the unknown in question by the
“ constantsb,, b,,...,b_.
b‘1 a‘12 a13 Ia‘1‘1 b‘l a13 a11 a12 b‘1
@ b2 a22 aE3 a21 bZ 323 a2'1 a22 bE
] b. a a a.. b. a a. a b
& For a 3x3 system X, = 3 2 9 X, = 31 9 53 X, = 31 32 3
2 D D D
£
>
https://manara.edu.sy/ Slide 21


https://manara.edu.sy/

01/04/2024

B. Haidar

Numerical Analysis

* Example:

Cramer’s Rule- Example

Cramer' s Rule can be used to solve the system X+ Xy = 3
ot LS Xg +2Xy =95
" b 2_1 " 1 5_2
™ 1 "2p o1
1 2 1 2

Cramer' s Rule is not practical for large systems .
To solve N by N system requires (N +1)(N -1)N! multiplications.

To solve a 30 by 30 system, 2.38 x 10%° multiplications are needed.
It can be used If the determinants are computed in efficient way

I;T‘“a
|I_..-"
¥

0)lioJi
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o Example:
X1+ Xy — x3 =1
X1+2x,—=2x3=0
—ZX1+Xz+X3 =1
" 1 1 -1 1 1 -1 1 1 1
0 2 -2 A 1 0 =2 . 1 2 0 )
~ 11 1 11 _ 2 1 1 -2 1 1
X4 = =—==2 = = == = "
1711 1 -1 2 X2 1 1 -1 37 ° BTTT 1 -1 2
1 2 -2 1 2 =2 1 2 =2
-2 1 1 -2 1 1 -2 1 1
< 2
- {x} =142
£
3 3
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The Elimination of Unknows

® The elimination of unknowns by combining equations is an algebraic approach that can be

illustrated for a set of two equations:
a1,X;%a,,X,=b, (1)
a,,X;a,,X,=b, (2)
* Eq. (1) might be multiplied by a,,and Eq. (2) by a,,to give

a,,a,,X,;ta,,a,,x,=b.a,, (3)

1172171 71272172

a,,31,%,+a,,3,,X,=b,a,, (4)

Subtracting Eq. (3) from Eq. (4) will, therefore, eliminate the x, term from the equations to yield

a,,31,%,7a,,3,,X,=b,a,,—b,a,,

https://manara.edu.sy/ Slide 24
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: The Elimination of Unknows ..
~ deol ~
S 6)liodl
®* Which can be solved for:
_aggby —ayh
X2 - a, b
Ay dpy —appdyg 4y b,
35 Xy =
5 ’ dyy  dap
“ dy; dpx
® X, can then be substituted into Eq. (1), which can be solved for:
X = Aol —ay,h,

A d11877 — 812877 b, ap
_E b, ax
< xl =
.T§ dyp  dy2
§ dzy  dx
2
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The Elimination of Unknows - Example

® Use the elimination to solve:
3x1 + sz =18

—x1+2x2:2

® The elimination of unknowns can be extended to systems with more than two or three
equations. However, the numerous calculations that are required for larger systems make the
method extremely tedious to implement by hand. However, as described in the next section,
the technique can be formalized and readily programmed for the computer.
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&
g 8LiaJl
® In the previous section, the elimination of unknowns was used to solve a pair of
simultaneous equations. The procedure consisted of two steps:
1. The equations were manipulated to eliminate one of the unknowns from the equations. The
g result of this elimination step was that we had one equation with one unknown.
o
2. Consequently, this equation could be solved directly and the result back-substituted into one
of the original equations to solve for the remaining unknown.
® This basic approach can be extended to large sets of equations by developing a systematic
B scheme or algorithm to eliminate unknowns and to back-substitute. Gauss elimination is the
:E most basic of these schemes.
£
>
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Naive Gauss Elimination

* The method consists of two steps:

* Forward Elimination: the system is reduced to upper
triangular form. A sequence of elementary operations is

used.

* Backward Substitution: Solve the system starting from

the last variable.

Ay

a'21

G

Ay,

a'22

a32

%3

a23

Ass |

dj; A
0 a,'
0 0

A3
P

Az

v

0)lioall
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g Naive Gauss Elimination o
g &)liadl
o PPy re———
The two phases of Gauss o e
C ain a2 a1z i+ C
elimination: |
a1 Qa22 G23 | C2
Forword elimination and back Q31 a3p azz | c3
2 substitution. L F_OF.WOfd
£ L elimination
o . . .
The primes indicate the number
P e a1 a2 aig <
of times that the coefficients and , , P
- @zy @z i &2
constants have been modified. e ; e
g X3 = C3/033
2 € — abaxa] /o Back
2 = lles ehiliel, substitution
5 X1 = |cy — a120 — ai3xa)/an
£
2
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g Naive Gauss Elimination - Example —
S 6)liodl
Example — -
o e . 2 1 -3 -3
Use Gauss elimination to solve 3 ) 1 .
& xX,— 2x,+ 2x,= 1
3 1 2 3 1 2 2 1
o 2)(1 + X, - 3)(3: -3 0 5 -7 -5
0 -5 5 7
-3x,+ X,— x;=4
* * * * - * 1 _2 2 1
Carry six significant figures during the 0 5 7 5
computation. 0 0 -2 2
£ X3 1
g X2 -2,4
8 x1 -1,8
]
£
=]
2
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Examp|e: Solve the following system using Naive Gauss Elimination.
6x, 2x, + 2x; + 4x, = 16
5 12x, 8x, + 6x, + 10x, = 26
: 3x, — 13x, + 9%, + 3x, = -19
B -6x, 4x, + x, - 18x, = -34
g
E
>
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