

https://manara.edu.sy/

1

 مدخل إلى الخوارزميات والبرمجة هندسة الميكاترونيكس سنة أولى

2023-2024 مدرس المقرر: د.عيس ى الغنام

Lecture No.6

C++ For Loop

When you know exactly how many times you want to loop through a block of code, use the for loop instead

of a while loop:

Syntax

for (statement 1; statement 2; statement 3) {
 // code block to be executed
}

Statement 1 is executed (one time) before the execution of the code block.

Statement 2 defines the condition for executing the code block.

Statement 3 is executed (every time) after the code block has been executed.

The example below will print the numbers 0 to 4:

Example

for (int i = 0; i < 5; i++) {
 cout << i << "\n";
}

Example explained

Statement 1 sets a variable before the loop starts (int i = 0).

Statement 2 defines the condition for the loop to run (i must be less than 5). If the condition is true, the loop

will start over again, if it is false, the loop will end.

Statement 3 increases a value (i++) each time the code block in the loop has been executed.

Another Example: This example will only print even values between 0 and 10:

for (int i = 0; i <= 10; i = i + 2) {
 cout << i << "\n";
}

https://manara.edu.sy/
https://manara.edu.sy/

https://manara.edu.sy/

2

Pseudocode Example: Read 50 numbers and find their sum and average. (Pseudocode For Loop Example)

Flowchart

Pseudocode

1. BEGIN
2. NUMBER counter, sum=0, num
3. FOR counter=1 TO 50 STEP 1 DO
4. OUTPUT "Enter a Number"
5. INPUT num
6. sum=sum+num
7. ENDFOR
8. OUTPUT sum
9. OUTPUT sum/50
10. END

 EXAMPLE: Read 10 numbers and find sum of even numbers

1. BEGIN
2.
3. NUMBER counter, sum=0, num
4.
5. FOR counter=1 TO 10 STEP 1

DO
6. OUTPUT "Enter a Number"
7. INPUT num
8.
9. IF num % 2 == 0 THEN
10. sum=sum+num
11. ENDIF
12.
13. ENDFOR
14. OUTPUT sum
15.
16. END

https://manara.edu.sy/

https://manara.edu.sy/

3

Nested Loops

It is also possible to place a loop inside another loop. This is called a nested loop.

The "inner loop" will be executed one time for each iteration of the "outer loop":

Example

// Outer loop
for (int i = 1; i <= 2; ++i) {
 cout << "Outer: " << i << "\n"; // Executes 2 times

 // Inner loop
 for (int j = 1; j <= 3; ++j) {
 cout << " Inner: " << j << "\n"; // Executes 6 times (2 * 3)
 }
}

C++ Break and Continue

C++ Break

You have already seen the break statement used in an earlier chapter of this tutorial. It was used to "jump

out" of a switch statement.

The break statement can also be used to jump out of a loop.

This example jumps out of the loop when i is equal to 4:

Example

for (int i = 0; i < 10; i++) {
 if (i == 4) {
 break;
 }
 cout << i << "\n";
}

https://manara.edu.sy/
https://www.w3schools.com/cpp/cpp_switch.asp
https://www.w3schools.com/cpp/cpp_switch.asp

https://manara.edu.sy/

4

C++ Continue

The continue statement breaks one iteration (in the loop), if a specified condition occurs, and continues

with the next iteration in the loop.

This example skips the value of 4:

Example

for (int i = 0; i < 10; i++) {
 if (i == 4) {
 continue;
 }
 cout << i << "\n";
}

https://manara.edu.sy/

https://manara.edu.sy/

5

C++ Arrays

Arrays are used to store multiple values in a single variable, instead of declaring separate variables for

each value.

To declare an array, define the variable type, specify the name of the array followed by square

brackets and specify the number of elements it should store:

string cars[4];

We have now declared a variable that holds an array of four strings. To insert values to it, we can use an

array literal - place the values in a comma-separated list, inside curly braces:

string cars[4] = {"Volvo", "BMW", "Ford", "Mazda"};

To create an array of three integers, you could write:

int myNum[3] = {10, 20, 30};

Access the Elements of an Array

You access an array element by referring to the index number inside square brackets [].

This statement accesses the value of the first element in cars:

Example

string cars[4] = {"Volvo", "BMW", "Ford", "Mazda"};
cout << cars[0];
// Outputs Volvo

Note: Array indexes start with 0: [0] is the first element. [1] is the second element, etc.

Change an Array Element

To change the value of a specific element, refer to the index number:

cars[0] = "Opel";

Example

string cars[4] = {"Volvo", "BMW", "Ford", "Mazda"};
cars[0] = "Opel";
cout << cars[0];
// Now outputs Opel instead of Volvo

https://manara.edu.sy/

https://manara.edu.sy/

6

C++ Arrays and Loops

Loop Through an Array

You can loop through the array elements with the for loop.

The following example outputs all elements in the cars array:

Example

string cars[5] = {"Volvo", "BMW", "Ford", "Mazda", "Tesla"};
for (int i = 0; i < 5; i++) {
 cout << cars[i] << "\n";
}

This example outputs the index of each element together with its value:

Example

string cars[5] = {"Volvo", "BMW", "Ford", "Mazda", "Tesla"};
for (int i = 0; i < 5; i++) {
 cout << i << " = " << cars[i] << "\n";
}

And this example shows how to loop through an array of integers:

Example

int myNumbers[5] = {10, 20, 30, 40, 50};
for (int i = 0; i < 5; i++) {
 cout << myNumbers[i] << "\n";}

The foreach Loop

There is also a "for-each loop" (introduced in C++ version 11 (2011), which is used exclusively to loop

through elements in an array (or other data sets):

Syntax

for (type variableName : arrayName) {
 // code block to be executed
}

https://manara.edu.sy/
https://www.w3schools.com/cpp/cpp_for_loop.asp
https://www.w3schools.com/cpp/cpp_for_loop.asp
https://www.w3schools.com/cpp/cpp_arrays.asp
https://www.w3schools.com/cpp/cpp_arrays.asp

https://manara.edu.sy/

7

The following example outputs all elements in an array, using a "for-each loop":

Example:

include <iostream>

using namespace std;

const int size = 50;

int main()

{

int myNumbers[5] = {10, 20, 30, 40, 50};
for (int i : myNumbers) {
 cout << i << "\n";
}

C++ Omit Array Size

In C++, you don't have to specify the size of the array. The compiler is smart enough to determine the size

of the array based on the number of inserted values:

string cars[] = {"Volvo", "BMW", "Ford"}; // Three arrays

The example above is equal to:

string cars[3] = {"Volvo", "BMW", "Ford"}; // Also three arrays

However, the last approach is considered as "good practice", because it will reduce the chance of errors in

your program.

https://manara.edu.sy/

https://manara.edu.sy/

8

Omit Elements on Declaration

It is also possible to declare an array without specifying the elements on declaration, and add them later:

Example

string cars[5];
cars[0] = "Volvo";
cars[1] = "BMW";
...

Get the Size of an Array

To get the size of an array, you can use the sizeof() operator:

Example

int myNumbers[5] = {10, 20, 30, 40, 50};
cout << sizeof(myNumbers);

Result:

20

Why did the result show 20 instead of 5, when the array contains 5 elements?

It is because the sizeof() operator returns the size of a type in bytes.

You learned from the Data Types chapter that an int type is usually 4 bytes, so from the example above, 4

x 5 (4 bytes x 5 elements) = 20 bytes.

To find out how many elements an array has, you have to divide the size of the array by the size of the

data type it contains:

Example

int myNumbers[5] = {10, 20, 30, 40, 50};
int getArrayLength = sizeof(myNumbers) / sizeof(int);
cout << getArrayLength;

Result:

5

https://manara.edu.sy/
https://www.w3schools.com/cpp/cpp_data_types.asp
https://www.w3schools.com/cpp/cpp_data_types.asp

https://manara.edu.sy/

9

Loop Through an Array with sizeof()

In the Arrays and Loops Chapter, we wrote the size of the array in the loop condition (i < 5). This is not

ideal, since it will only work for arrays of a specified size.

However, by using the sizeof() approach from the example above, we can now make loops that work for

arrays of any size, which is more sustainable.

Instead of writing:

int myNumbers[5] = {10, 20, 30, 40, 50};
for (int i = 0; i < 5; i++) {
 cout << myNumbers[i] << "\n";
}

It is better to write:

Example

int myNumbers[5] = {10, 20, 30, 40, 50};
for (int i = 0; i < sizeof(myNumbers) / sizeof(int); i++) {
 cout << myNumbers[i] << "\n";
}

Note that, in C++ version 11 (2011), you can also use the "for-each" loop:

Example

int myNumbers[5] = {10, 20, 30, 40, 50};
for (int i : myNumbers) {
 cout << i << "\n";
}

C++ Multi-Dimensional Arrays

A multi-dimensional array is an array of arrays. To declare a multi-dimensional array, define the variable

type, specify the name of the array followed by square brackets which specify how many elements the

main array has, followed by another set of square brackets which indicates how many elements the sub-

arrays have:

string letters[2][4];

As with ordinary arrays, you can insert values with an array literal - a comma-separated list inside curly

braces. In a multi-dimensional array, each element in an array literal is another array literal.

https://manara.edu.sy/
https://www.w3schools.com/cpp/cpp_arrays_loop.asp
https://www.w3schools.com/cpp/cpp_arrays_loop.asp
https://www.w3schools.com/cpp/cpp_arrays_loop.asp
https://www.w3schools.com/cpp/cpp_arrays_loop.asp

https://manara.edu.sy/

10

string letters[2][4] = {

 { "A", "B", "C", "D" },

 { "E", "F", "G", "H" }

};

Each set of square brackets in an array declaration adds another dimension to an array. An array like the

one above is said to have two dimensions.

Arrays can have any number of dimensions. The more dimensions an array has, the more complex the

code becomes. The following array has three dimensions:

string letters[2][2][2] = {

 {

 { "A", "B" },

 { "C", "D" }

 },

 {

 { "E", "F" },

 { "G", "H" }

 }

};

Access the Elements of a Multi-Dimensional Array

To access an element of a multi-dimensional array, specify an index number in each of the array's

dimensions. This statement accesses the value of the element in the first row (0) and third column (2) of

the letters array.

Example

string letters[2][4] = {

 { "A", "B", "C", "D" },

 { "E", "F", "G", "H" }

};

cout << letters[0][2]; // Outputs "C"

Remember that: Array indexes start with 0: [0] is the first element. [1] is the second element, etc.

https://manara.edu.sy/

https://manara.edu.sy/

11

Change Elements in a Multi-Dimensional Array

To change the value of an element, refer to the index number of the element in each of the dimensions:

Example

string letters[2][4] = {

 { "A", "B", "C", "D" },

 { "E", "F", "G", "H" }

};

letters[0][0] = "Z";

cout << letters[0][0]; // Now outputs "Z" instead of "A"

Loop Through a Multi-Dimensional Array

To loop through a multi-dimensional array, you need one loop for each of the array's dimensions.

The following example outputs all elements in the letters array:

Example

string letters[2][4] = {

 { "A", "B", "C", "D" },

 { "E", "F", "G", "H" }

};

for (int i = 0; i < 2; i++) {

 for (int j = 0; j < 4; j++) {

 cout << letters[i][j] << "\n";

 }

}

This example shows how to loop through a three-dimensional array:

Example

string letters[2][2][2] = {

 {

 { "A", "B" },

 { "C", "D" }

 },

 {

https://manara.edu.sy/

https://manara.edu.sy/

12

 { "E", "F" },

 { "G", "H" }

 }

};

for (int i = 0; i < 2; i++) {

 for (int j = 0; j < 2; j++) {

 for (int k = 0; k < 2; k++) {

 cout << letters[i][j][k] << "\n";

 }

 }

}

string letters[2][2][2] = {

 {

 { "A", "B" },

 { "C", "D" }

 },

 {

 { "E", "F" },

 { "G", "H" }

 }

};

for (int i = 0; i < 2; i++) {

https://manara.edu.sy/

https://manara.edu.sy/

13

 for (int j = 0; j < 2; j++) {

 for (int k = 0; k < 2; k++) {

 cout << letters[i][j][k] << " ";}

 cout<<endl;}

}

Why Multi-Dimensional Arrays?

Multi-dimensional arrays are great at representing grids. This example shows a practical use for them. In

the following example we use a multi-dimensional array to represent a small game of Battleship:

• Example

include <iostream>

using namespace std;

const int size = 50;

int main()

{// We put "1" to indicate there is a ship.

bool ships[4][4] = {

 { 0, 1, 1, 0 },

 { 0, 0, 0, 0 },

 { 0, 0, 1, 0 },

 { 0, 0, 1, 0 }

};

int hits = 0; // Keep track of how many hits the player has and how many turns they have played in these variables

int numberOfTurns = 0;

https://manara.edu.sy/

https://manara.edu.sy/

14

int row, column;

while (hits < 4) { // Allow the player to keep going until they have hit all four ships

 cout << "Selecting coordinates\n";

 do{// Ask the player for a row

 cout << "Choose a row number between 0 and 3: ";

 cin >> row;

 } while (row>3 || row<0);

 do{// Ask the player for a column

 cout << "Choose a column number between 0 and 3: ";

 cin >> column;

 } while (column>3 || column<0);

 if (ships[row][column]) // Check if a ship exists in those coordinates

 ships[row][column] = 0; // If the player hit a ship, remove it by setting the value to zero.

 hits++; // Increase the hit counter

 cout << "Hit! " << (4-hits) << " left.\n\n"; // Tell the player that they have hit a ship and how many ships are left

else {

 cout << "Miss\n\n"; // Tell the player that they missed

 }

 numberOfTurns++; // Count how many turns the player has taken

}

cout << "Victory!\n";

cout << "You won in " << numberOfTurns << " turns";

return 0;}

 انتهت المحاضرة

https://manara.edu.sy/

