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STATE OBSERVERS

In the pole-placement approach to the design of
control systems, we assumed that all state variables
are available for feedback. In practice, however, not
all state variables are available for feedback. Then we
need to estimate unavailable state variables.

Estimation of unmeasurable state variables is
commonly called observation. A device (or a
computer program) that estimates or observes the
state variables is called a state observer, or simply an
observer. If the state observer observes all state
variables of the system, regardless of whether some
state variables are available for direct measurement,
it is called a full-order state observer.



STATE OBSERVERS

There are times when this will not be necessary,
when we will need observation of only the
unmeasurable state variables, but not of those that
are directly measurable as well. For example, since
the output variables are observable and they are
linearly related to the state variables, we need not
observe all state variables, but observe only n-m
state variables, where n is the dimension of the state
vector and m is the dimension of the output vector.

An observer that estimates fewer than n state
variables, where n is the dimension of the state
vector, is called a reduced-order state observer or,
simply, a reduced-order observer.



STATE OBSERVERS

If the order of the reduced-order state observer is
the minimum possible, the observer is called a
minimum-order state observer or minimum-order
observer. In this section, we shall discuss both the
full-order state observer and the minimum-order
state observer.

State Observer

A state observer estimates the state variables based
on the measurements of the output and control
variables. Here the concept of observability plays an
important role. As we shall see later, state observers
can be designed if and only if the observability
condition is satisfied.



STATE OBSERVERS

In the following discussions of state observers, we shall
use the notation ෩𝐗 to designate the observed state
vector. In many practical cases, the observed state vector
෩𝐗 is used in the state feedback to generate the desired
control vector.

Consider the plant defined by

The observer is a subsystem to reconstruct the state
vector of the plant. The mathematical model of the
observer is basically the same as that of the plant, except
that we include an additional term that includes the
estimation error to compensate for inaccuracies in
matrices A and B and the lack of the initial error.



STATE OBSERVERS

The estimation error or observation error is the
difference between the measured output and the
estimated output. The initial error is the difference
between the initial state and the initial estimated
state. Thus, we define the mathematical model of
the observer to be

where ෩𝐗 is the estimated state and C෩𝐗 is the
estimated output. The inputs to the observer are the
output y and the control input u.



STATE OBSERVERS

Matrix 𝐊𝒆, which is called the observer gain matrix, is
a weighting matrix to the correction term involving
the difference between the measured output y and
the estimated output C෩𝐗 . This term continuously
corrects the model output and improves the
performance of the observer. Figure shows the block
diagram of the system and the full-order state
observer.



STATE OBSERVERS



Full-Order State Observer

The order of the state observer that will be discussed
here is the same as that of the plant. The observer
error equation:

Define the difference between 𝐗 and ෩𝐗 as the error
vector 𝐞, or

Then



Full-Order State Observer

We see that the dynamic behavior of the error vector
is determined by the eigenvalues of matrix 𝐀 − 𝐊𝐞𝐂.
If matrix 𝐀 − 𝐊𝐞𝐂 is a stable matrix, the error vector
will converge to zero for any initial error vector 𝒆(0).
That is, will converge to 𝐗(𝑡) regardless of the values
of 𝐗(0) and If the eigenvalues of matrix 𝐀 − 𝐊𝐞𝐂 are
chosen in such a way that the dynamic behavior of
the error vector is asymptotically stable and is
adequately fast, then any error vector will tend to
zero (the origin) with an adequate speed.

If the plant is completely observable, then it can be
proved that it is possible to choose matrix 𝐊𝐞 such
that 𝐀 − 𝐊𝐞𝐂 has arbitrarily desired eigenvalues.



Full-Order State Observer

That is, the observer gain matrix 𝐊𝐞 can be
determined to yield the desired matrix 𝐀 − 𝐊𝐞𝐂 . We
shall discuss this matter in what follows.

Dual Problem

The problem of designing a full-order observer
becomes that of determining the observer gain
matrix 𝐊𝐞 such that the error dynamics are
asymptotically stable with sufficient speed of
response.

(The asymptotic stability and the speed of response
of the error dynamics are determined by the
eigenvalues of matrix 𝐀 − 𝐊𝐞𝐂 .)



Full-Order State Observer

Hence, the design of the full-order observer becomes
that of determining an appropriate 𝐊𝐞 such that 𝐀
− 𝐊𝐞𝐂 has desired eigenvalues. Thus, the problem
here becomes the same as the pole-placement
problem. In fact, the two problems are
mathematically the same. This property is called
duality.

Consider the system defined by

In designing the full-order state observer, we may
solve the dual problem, that is, solve the pole-
placement problem for the dual system.



Full-Order State Observer

assuming the control signal 𝝂 to be

If the dual system is completely state controllable,
then the state feedback gain matrix 𝐊 can be
determined such that matrix 𝐀∗ − 𝐂∗𝐊𝐞 will yield a
set of the desired eigenvalues.

If 𝝁𝟏, 𝝁𝟐 , … , 𝝁𝒏 are the desired eigenvalues of the
state observer matrix, then by taking the same 𝝁𝒊’s
as the desired eigenvalues of the state-feedback gain
matrix of the dual system, we obtain



Full-Order State Observer

Noting that the eigenvalues of 𝐀∗ − 𝐂∗𝐊 and those of 𝐀
− 𝐊∗𝐂 are the same, we have

Comparing the characteristic polynomial and the
characteristic polynomial for the observer system, we
find that 𝐊𝐞 and 𝐊∗ are related by

Thus, using the matrix 𝐊 determined by the pole-
placement approach in the dual system, the observer
gain matrix 𝐊𝐞 for the original system can be determined
by using the relationship 𝐊𝐞 = 𝐊∗.



Necessary and Sufficient Condition for State Observation

As discussed, a necessary and sufficient condition for the
determination of the observer gain matrix 𝐊𝐞 for the
desired eigenvalues of 𝐀 − 𝐊𝐞𝐂 is that the dual of the
original system

be completely state controllable. The complete state
controllability condition for this dual system is that the
rank of

be n. This is the condition for complete observability of
the original system. This means that a necessary and
sufficient condition for the observation of the state of the
system is that the system be completely observable.



Necessary and Sufficient Condition for State Observation

Once we select the desired eigenvalues (or desired
characteristic equation), the full order state observer
can be designed, provided the plant is completely
observable. The desired eigenvalues of the
characteristic equation should be chosen so that the
state observer responds at least two to five times
faster than the closed-loop system considered. As
stated earlier, the equation for the full-order state
observer is

It is noted that thus far we have assumed the
matrices A, B, and C in the observer to be exactly the
same as those of the physical plant.



Necessary and Sufficient Condition for State Observation

If there are discrepancies in A, B, and C in the
observer and in the physical plant, the dynamics of
the observer error are no longer governed by last
Equation. This means that the error may not
approach zero as expected. Therefore, we need to
choose 𝐊𝐞 so that the observer is stable and the
error remains acceptably small in the presence of
small modeling errors.



Transformation Approach to Obtain State Observer Gain 
Matrix Ke

By following the same approach as we used in
deriving the equation for the state feedback gain
matrix 𝐊, we can obtain the following equation:

where 𝐊𝐞 is an nx1 matrix,



Transformation Approach to Obtain State Observer Gain 
Matrix Ke

And



Direct-Substitution Approach to Obtain State Observer Gain 
Matrix Ke

Similar to the case of pole placement, if the system is
of low order, then direct substitution of matrix 𝐊𝐞
into the desired characteristic polynomial may be
simpler. For example, if 𝐗 is a 3-vector, then write
the observer gain matrix 𝐊𝐞 as

Substitute this 𝐊𝐞 matrix into the desired
characteristic polynomial:



Direct-Substitution Approach to Obtain State Observer Gain 
Matrix Ke

By equating the coefficients of the like powers of s on
both sides of this last equation, we can determine
the values of 𝒌𝒆𝟏, 𝒌𝒆𝟐 , and 𝒌𝒆𝟑 . This approach is
convenient if n=1, 2, or 3, where n is the dimension
of the state vector 𝐗. (Although this approach can be
used when n=4, 5, 6,… , the computations involved
may become very tedious).

Another approach to the determination of the state
observer gain matrix 𝐊𝐞 is to use Ackermann’s
formula. This approach is presented in the following.



Ackermann’s Formula

Consider the system defined by

we derived Ackermann’s formula for pole placement 
for the system . The result was given by :

For the dual of the system

the preceding Ackermann’s formula for pole
placement is modified to



Ackermann’s Formula

As stated earlier, the state observer gain matrix 𝐊𝐞 is
given by 𝐊∗, where 𝐊 is given by last Equation. Thus,

where ∅(𝒔) is the desired characteristic polynomial
for the state observer, or



Ackermann’s Formula

where ∅(𝒔) is the desired characteristic polynomial
for the state observer, or

where 𝝁𝟏, 𝝁𝟐,… , 𝝁𝒏 are the desired eigenvalues.
Equation is called Ackermann’s formula for the
determination of the observer gain matrix 𝐊𝐞 .



Comments on Selecting the Best Ke

Referring to Figure, notice that the feedback signal
through the observer gain matrix 𝐊𝐞 serves as a
correction signal to the plant model to account for
the unknowns in the plant. If significant unknowns
are involved, the feedback signal through the matrix
𝐊𝐞 should be relatively large. However, if the output
signal is contaminated significantly by disturbances
and measurement noises, then the output y is not
reliable and the feedback signal through the matrix
𝐊𝐞 should be relatively small. In determining the
matrix 𝐊𝐞 , we should carefully examine the effects
of disturbances and noises involved in the output y.

Remember that the observer gain matrix 𝐊𝐞 depends 
on the desired characteristic equation



Comments on Selecting the Best Ke

The choice of 𝝁𝟏, 𝝁𝟐,… , 𝝁𝒏 a set of is, in many
instances, not unique. As a general rule, however,
the observer poles must be two to five times faster
than the controller poles to make sure the
observation error (estimation error) converges to
zero quickly. This means that the observer estimation
error decays two to five times faster than does the
state vector x. Such faster decay of the observer
error compared with the desired dynamics makes
the controller poles dominate the system response.



Comments on Selecting the Best Ke

It is important to note that if sensor noise is
considerable, we may choose the observer poles to
be slower than two times the controller poles, so
that the bandwidth of the system will become lower
and smooth the noise. In this case the system
response will be strongly influenced by the observer
poles. If the observer poles are located to the right of
the controller poles in the left-half s plane, the
system response will be dominated by the observer
poles rather than by the control poles.



Comments on Selecting the Best Ke

In the design of the state observer, it is desirable to
determine several observer gain matrices 𝐊𝐞 based
on several different desired characteristic equations.
For each of the several different matrices 𝐊𝐞 ,
simulation tests must be run to evaluate the
resulting system performance. Then we select the
best 𝐊𝐞 from the viewpoint of overall system
performance. In many practical cases, the selection
of the best matrix 𝐊𝐞 boils down to a compromise
between speedy response and sensitivity to
disturbances and noises.



EXAMPLE

Consider the system

Where

We use the observed state feedback such that

Design a full-order state observer, assuming that the
system configuration is identical to that shown in
Figure. Assume that the desired eigenvalues of the
observer matrix are

The design of the state observer reduces to the
determination of an appropriate observer gain matrix
𝐊𝐞 .



EXAMPLE

Let us examine the observability matrix. The rank of

is 2. Hence, the system is completely observable and the
determination of the desired observer gain matrix is
possible. We shall solve this problem by three methods.

Method 1: We shall determine the observer gain matrix by
use of Equation (𝐊𝐞). The given system is already in the
observable canonical form. Hence, the transformation
matrix 𝐐 = 𝐖𝐍∗ −𝟏 is I. Since the characteristic
equation of the given system is



EXAMPLE

we have

The desired characteristic equation is

Hence,

Then the observer gain matrix 𝐊𝐞 can be obtained as
follows:



EXAMPLE

Method 2:

the characteristic equation for the observer becomes

Define

Then the characteristic equation becomes



EXAMPLE

Since the desired characteristic equation is

by comparing, we obtain

Method 3: We shall use Ackermann’s formula:

Where

Thus,



EXAMPLE

And

As a matter of course, we get the same 𝐊𝐞 regardless of 
the method employed.

The equation for the full-order state observer is given by 
Equation



EXAMPLE

Finally, it is noted that, similar to the case of pole
placement, if the system order n is 4 or higher, methods 1
and 3 are preferred, because all matrix computations can
be carried out by a computer, while method 2 always
requires hand computation of the characteristic equation
involving unknown parameters 𝒌𝒆𝟏, 𝒌𝒆𝟐 , …, 𝒌𝒆𝐧.



Effects of the Addition of the Observer on a Closed-Loop 
System

In the pole-placement design process, we assumed that
the actual state 𝐗(𝑡) was available for feedback. In
practice, however, the actual state 𝐗(𝑡) may not be
measurable, so we will need to design an observer and
use the observed state ෩𝐗 (𝑡) for feedback. The design
process, therefore, becomes a two-stage process, the first
stage being the determination of the feedback gain matrix
𝐊 to yield the desired characteristic equation and the
second stage being the determination of the observer gain
matrix 𝐊𝐞 to yield the desired observer characteristic
equation.

Let us now investigate the effects of the use of the
observed state ෩𝐗 (𝑡), rather than the actual state 𝐗(𝑡), on
the characteristic equation of a closed-loop control
system.



Effects of the Addition of the Observer on a Closed-Loop 
System



Effects of the Addition of the Observer on a Closed-Loop 
System

Consider the completely state controllable and completely 
observable system defined by the equations

For the state-feedback control based on the observed
state ෩𝐗

With this control, the state equation becomes

The difference between the actual state 𝐗(𝑡) and the 
observed state ෩𝐗(𝑡) has been defined as the error 𝐞(𝑡) :



Effects of the Addition of the Observer on a Closed-Loop 
System

Substitution of the error vector 𝐞(𝑡) gives

Note that the observer error equation was given by :

Combining Equations, we obtain

This Equation describes the dynamics of the observed-
state feedback control system.

The characteristic equation for the system is



Effects of the Addition of the Observer on a Closed-Loop 
System

Or

Notice that the closed-loop poles of the observed-state
feedback control system consist of the poles due to the
pole-placement design alone and the poles due to the
observer design alone. This means that the pole-
placement design and the observer design are
independent of each other. They can be designed
separately and combined to form the observed-state
feedback control system. Note that, if the order of the
plant is n, then the observer is also of nth order (if the
full-order state observer is used), and the resulting
characteristic equation for the entire closed-loop system
becomes of order 2n.



Transfer Function of the Observer-Based Controller

Consider the plant defined by

Assume that the plant is completely observable.
Assume that we use observed-state feedback control

Then, the equations for the observer are given by

By taking the Laplace transform of Equation,
assuming a zero initial condition, and solving for ෩𝐗(𝑠)
we obtain



Transfer Function of the Observer-Based Controller

By substituting this ෩𝐗(𝑠) into the Laplace transform of
Equation

we obtain

Then the transfer function U(s)/Y(s) can be obtained as

Figure shows the block diagram representation for the 
system. Notice that the transfer function



Transfer Function of the Observer-Based Controller

acts as a controller for the system. Hence, we call the
transfer function



Transfer Function of the Observer-Based Controller

the observer-based controller transfer function or,
simply, the observer-controller transfer function.

Note that the observer-controller matrix

may or may not be stable, although 𝐀 − 𝐁𝐊 and 𝐀
− 𝐊𝒆𝑪 are chosen to be stable. In fact, in some cases
the matrix 𝐀 − 𝐊𝒆𝑪 − 𝐁𝐊 may be poorly stable or even
unstable.



EXAMPLE

Consider the design of a regulator system for the following
plant:

Where

Suppose that we use the pole-placement approach to the
design of the system and that the desired closed-loop
poles for this system are at 𝒔 = 𝝁𝒊(i=1, 2), where 𝝁𝟏=–
1.8+j2.4 and 𝝁𝟐=–1.8-j2.4. The state-feedback gain matrix
𝐊 for this case can be obtained as follows:



EXAMPLE

Using this state-feedback gain matrix 𝐊, the control signal
u is given by

Suppose that we use the observed-state feedback control
instead of the actual-state feedback control, or

where we choose the observer poles to be at

Obtain the observer gain matrix 𝐊𝒆 and draw a block
diagram for the observed-state feedback control system.



EXAMPLE

Then obtain the transfer function Τ𝑼(𝒔) [−𝒀(𝒔)] for the
observer controller, and draw another block diagram with
the observer controller as a series controller in the
feedforward path. Finally, obtain the response of the
system to the following initial condition:

For the system, the characteristic polynomial is

Thus,



EXAMPLE

The desired characteristic polynomial for the observer is

Hence,

For the determination of the observer gain matrix, we use
Equation

Where



EXAMPLE

Hence,

This Equation gives the observer gain matrix 𝐊𝒆 . The
observer equation is given by Equation

Since

becomes



EXAMPLE

Or

The block diagram of the system with observed-state
feedback is shown in Figure (a).



EXAMPLE



EXAMPLE

The transfer function of the observer-controller is

Figure (b) shows a block diagram of the system.



EXAMPLE



EXAMPLE

The dynamics of the observed-state feedback control
system just designed can be described by the following
equations: For the plant,

For the observer,

The system, as a whole, is of fourth order.



EXAMPLE

The characteristic equation for the system is

The characteristic equation can also be obtained from the
block diagram for the system shown in Figure (b). Since the
closed-loop transfer function is

the characteristic equation is



EXAMPLE

As a matter of course, the characteristic equation is the
same for the system in state-space representation and in
transfer-function representation.

Finally, we shall obtain the response of the system to the
following initial condition:

The response to the initial condition can be determined
from



EXAMPLE

The resulting response curves are shown in Figure:



EXAMPLE

The resulting response curves are shown in Figure:
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