Center of Gravity, Center of Mass, Centroids مركز الثقل، مركز الكتلة، المركز الجيومتري

1. Center of Forces.
2. Center of Gravity and Center of Mass.
3. Centroids: Center of a Volume, Center of an Area and Center of a Line.
4. Examples and Exercises.

4. Examples and Exercises. Centroids of plane areas and lines
 Three Remarks before starting

1. The term "centroid" is used when the material factors (γ, ρ) are omitted, i.e., when one is concerned with geometrical considerations only. يستخدم مصطلح "المركز أو مركز الشكل" عندما تكون المادة متجانسـة وينصب اهتمامنا على الجيومتري فقط
2. If the area has an axis of symmetry, the centroid of the area lies on this axis.
 إذا كان للشكل محور تناظر أو أكثر فإن المركز يقع على أي من هذه المحاور

3. For area composed of several parts of simple shape. The coordinates X_{i}, y_{i} of the centroids C_{i} and the areas A_{i} of the individual parts are assumed to be known.

$$
\begin{aligned}
& \text { إذا كان الشكل مجمعا من أشكال بسيطةمعرفة ومراكزها معلومة، يستنتج } \\
& \text { مركزه من المعادلات البسيطة المبينة جانبا كما سنرى في أمثلة لاحقة. } \\
& y_{C}=\frac{\sum_{i} y_{i} A_{i}}{\sum_{i} A_{i}}
\end{aligned}
$$

Example 1. Locate the centroid of the area that is bounded by a parabola, as in figure (a).

Solution

We use the coordinate system as shown in (b). Since the y-axis is an axis of symmetry, the centroid Clies on it: $x_{c}=0$. To determine the coordinate y_{c} from:

but

$$
A=\int_{1}^{2} x d y=\int_{0}^{n} \ldots \ldots \quad \text { and }
$$

$y=c x^{2}$, with $x=a$ when $y=h$, so $c=$? and $y=$?

Example 2. Find the centroid of the L-shaped area in Fig. (a), then in Fig. (c).
Solution: We choose a coordinate system and consider the area to be composed of two rectangles (b):

$$
A_{1}=8 a t, \quad A_{2}=(5 a-t) t
$$

The coordinates of their respective centroids are given by

$$
x_{1}=t / 2, y_{1}=4 \mathrm{a} ; \quad x_{2}=t+(5 a-t) / 2=(5 a+t) / 2, y_{2}=t / 2
$$

$$
x_{C}=\frac{\sum_{2} x_{i} A_{i}}{\sum_{2} A_{i}}=\frac{(t / 2)(8 a t)+[(5 a+t) / 2][(5 a-t) t]}{(8 a t)+[(5 a-t) t]}
$$

$$
y_{c}=\frac{\sum_{2} y_{i} A_{i}}{\sum_{2} A_{i}}=\frac{(4 a)(8 a t)+(t / 2)[(5 a-t) t]}{(8 a t)+[(5 a-t) t]}
$$

$$
x_{C}=\frac{4 a t^{2}+\left(25 a^{2}-t^{2}\right)(t / 2)}{13 a t-t^{2}}=\frac{25 a^{2}+8 a t-t^{2}}{26 a-2 t}
$$

$$
y_{C}=\frac{32 a^{2} t+(5 a-t)\left(t^{2} / 2\right)}{13 a t-t^{2}}=\frac{64 a^{2}+5 a t-t^{2}}{26 a-2 t}
$$

For $t \ll a$, as in Fig. (c), the areas become lines

$$
x_{C}=\frac{25 a}{26} \text { and } y_{C}=\frac{32 a}{13}
$$

Exercises.

1. Locate the centroids of the depicted profile. The measurements are given in mm .

2. Locate the centroids of the depicted profile. The measurements are given in mm .

3. Locate the centroid of the depicted area with a rectangular cutout. The measurements are given in cm .

4. A wire with constant thickness is deformed into the depicted figure. The measurements are given in mm . Locate the centroid.

5. From the triangular-shaped metal sheet $A B C$, the triangle $C D E$ has been cut out. The system is pin supported in A. Determine h such that $B C$ adjusts horizontal.

6. A thin sheet with constant thickness and density, consisting of a square and two triangles, is bent to the depicted figure (measurements in cm). Locate the center of gravity
7. Locate the centroids of the thin-walled profiles ($\mathrm{t} \ll \mathrm{a}$) as shown in Fig.

$$
|\leftarrow a \rightarrow 1 \leftarrow a \rightarrow|
$$

8. Locate the centroids of the thin-walled profiles ($\mathrm{t} \ll \mathrm{a}$) as shown in Fig.

9. Determine the coordinates of the centroid C of the number 5 .

10. A circular area is removed from a circle. Locate the centroids of the remaining areas.
11. A circular area is removed from an ellipse. Locate the centroids of the remaining areas.
12. The depicted stirrer consists of a homogenous wire that rotates about the sketched vertical axis. Determine the length l, such that the center of mass C is located on the rotation axis.

