Process costing system نظام تكاليف المراحل

Some companies use job order costing to determine the cost of their custom goods and services. In contrast, Shell Oil, Crayola, and Sony use a series of steps (called processes) to make large quantities of similar products, called process costing systems. There are two methods for handling process costing: weighted average and FIFO. We focus on the weighted average method

تستخدم بعض الشركات نظام الأوامر لتقرير كلفة سلعهم وخدماتهم حسب الطلب. وبشكل مقابل فإن شركة شل للنفط، وشركة سـوني تستخدم سلسلة خطوات تُدعى عمليات لإنتاج كميات كبيرة من المنتجات المتشابهة، بنظام يدعى نظام تكاليف المراحل. هناك طريقتان لمعالجة تكاليف العملية: المتوسط المرجح، والوارد أولاً صـادر أولاً.

نستعمل المفهومين التاليين بنظام تكاليف المراحل:We use two building blocks for process costing

- Conversion costs تكاليف التحويل
- Equivalent units of production وحدات الإنتاج المُعادل

Many companies are highly automated, so direct labor is a small part of total manufacturing costs. Such companies often use only two categories:

العديد من الشركات مؤتمتة بالكامل، لذلك فإن الأجور المباشرة هي جزء صغير من التكاليف الصناعية. مثل هذه
الشـركات تستـخدم في أغلب الأحيان صنفين من التكاليف فقط:

- Direct materials المواد المباشرة
- Conversion costs (direct labor plus manufacturing overhead) تكاليف التحويل

Combining direct labor and manufacturing overhead into a single category simplifies the accounting. We call this category conversion costs because it is the cost (direct labor plus manufacturing overhead) to convert raw materials into finished products.

The concept of equivalent units allows us to measure the amount of work done on a partially finished group of units during a period and to express it in terms of fully complete units of output.
مفهوم الوحدات المكافئة يسمح لنا بقياس كمية العمل المنجز بوحدات مكتملة جزئياً خلال الفترة والتعبير عنها بوحدات تامة.
with job order costing, cost information is collected by job. When a job is complete and all costs are added on the job cost record, managers can determine the cost of the job and of producing each unit بتكاليف الأوامر، فإن موضوع التكلفة هو الأمر التشغيلي. وعندما يكتمل الأمر وكل التكاليف تكون قـد أضيفت لسجل الأمر، يستطيع المدراء أن يحدّدوا تكلفة الأمر والإنتاج لكـل وحدة.

Job Order Costing

In process costing, all units go through the same production process and therefore, have the same unit cost. Each process requires the use of a separate Work in process inventory account. Costs are collected by process (or department). Materials, labor, and overhead can be incurred in any department. The costs accumulate until all costs have been added to the product, and it is sent to finished goods.

بنظام تكاليف المراحل، كل الوحدات تمر بطريقة الإنتاج نفسها ولذا فإن لها تكلفة الإنتاج نفسها. تتطلب كل مرحلة فتح حسـاب مخزون إنتاج تحت التشغيل مستقل. وبالتالي يتم تجميع التكاليف بـحسب المرحلة (أو القسـم). المواد، الأجور، والتكاليف الإضـافية يمكن أن تصرف بأي قسم. يتم مراكمة التكاليف التي تضـاف للمنتج ويتم إرسـالها إلى مخزن
الإنتـاج التـام.

Process Costing

There are four steps in process costing:

1. Summarize the flow of physical units.
2. Compute the output in equivalent units.
3. Compute the cost per equivalent unit.
4. Assign costs to units completed and units in ending inventory.

$$
\begin{aligned}
& \text { هناك أريع خطوات في حساب تكاليف المراحل: } \\
& \text { 1. تلخيص تدفق الوحدات المادية (إعداد تقرير الإنتاج) } \\
& \text { 2. حسـاب الناتج بوحدات مكافئة (التعبير عن المخرجات بما يكافئ وحدة مكتملة) } \\
& \text { 3. حسـاب تكلفة الوحدة المكافئة } \\
& \text { 4. تخصيص التكاليف للوحدات المكتملة ولمخزون آخر المدة }
\end{aligned}
$$

Steps of Process Costing

Summarize
 the flow of
 physical
 units

Compute
 output in
 equivalent
 units

Compute
the cost per
equivalent
unit

Assign
costs to
completed
and ending
inventory
units

To provide an example of process costing, the data shown here will be used. The company had no beginning inventory. Materials are added at the beginning of the process and conversion costs are added evenly throughout the process. During the period, 50,000 units were started and costs were incurred as shown here. Of the 50,000 units started, 40,000 were transferred to the next department. 10,000 remained in process.
لإعطاء مثال عن كيفيـة حسـاب تكاليف المراحل، سنستـخدم البيـانات التاليـة.

لا يوجد إنتاج تحت التشغيل أول المدة. تضـاف المواد في بداية المرحلة. في حين تضـاف عناصر التحويل بصيفة منتظمة

$$
\text { ومستمرة. خلال الفترة تم البدء بـ50000 وحدة اكتمل منها } 40000 \text { وحدة وتم تحويلها إلى القسم التالي. }
$$

Department 1

	Physical units	Dollars		Physical units
Beginning inventory	0	$\$$	0	Transferred out
Production started	50,000			40,000
Direct materials		$\$ 140,000$		
Conversion costs				
Direct labor		20,000		
Manufacturing overhead		48,000		
Total to account for	50,000	$\$ 208,000$		10,000
Ending inventory-25\% complete				

The first two steps involve determining the number of units worked on during the period and where they are in the production cycles.

1. "Units to account for" include the number of units still in process at the beginning of the period plus the number of units started. In this example, there were no units in beginning work in process and 50,000 units started.
2. "Units accounted for" shows what happened to the units in process during the period.

Of the 50,000 units started, 40,000 were completed and transferred out to the next department. The remaining 10,000 are only partially completed. In this example, materials are added at the beginning of the process, so the ending work in process is 100% complete as to materials (there are no more materials to add to these units). However, for conversion costs, the goods are 25% complete. Therefore, for ending inventory we multiply the 10,000 units by 25%.
The equivalent units for Department 1 are 50,000 for materials and 42,500 for conversion costs.

Department 1

Step 1

Step 2: Equivalent units
Flow of Direct materials Conversion physical units

Direct materials $\begin{array}{r}\text { Conversi } \\ \text { costs }\end{array}$
Units to be accounted for:
Beginning work in process
Started in production
Total physical units to account for
Units accounted for:
Completed and transferred out Ending work in process
Total physical units accounted for
Equivalent units

physical units		costs
0		
50,000		
50,000		
40,000	40,000	40,000
10,000	10,000	2,500
50,000		
	50,000	
		42,500

Step three is to compute the equivalent cost per unit. The cost of direct materials is divided by the equivalent units. The result is $\$ 2.80$ of materials cost per equivalent unit. For conversion costs, the direct labor and overhead costs are added together and divided by the 42,500 equivalent units for conversion costs.

Department 1		
	Direct materials	Conversion costs
Beginning work in process	0	0
Costs added	$\$ 140,000$	$\$ 68,000$
Divide by equivalent units	$\div 50,000$	$\div 42,500$
Cost per equivalent unit	$\$ 2.80$	$\$ 1.60$

The last step is to assign the period's cost to the units. For the 40,000 units transferred out, we multiply them by both the materials and labor cost per unit. $\$ 176,000$ will be transferred to the next department. The ending inventory needs to be split between materials and conversion. The materials cost uses the 10,000 equivalent units multiplied by the material unit costs. For conversion, we use 2,500 equivalent units multiplied by $\$ 1.60$. Ending inventory totals $\$ 32,000$.

Department 1			
	Direct materials	Conversion costs	Total
Completed and transferred out	[40,000 units $\times(2.80+1.60)]$		\$176,000
Ending work in process			
Direct materials	$(10,000 \times 2.80)$		\$28,000
Conversion costs		$(2,500 \times 1.60)$	4,000
Total cost of ending inventory			32,000
Total costs accounted for			\$208,000

in process of one department to the next. The amount is taken from the previous schedule.

GENERAL JOURNAL							
DATE	DESCRIPTION	DEBIT	CREDIT				
		Work in process - Dept. 2	176,000				
		Work in process - Dept. 1		176,000			

Notice how the ending balance in the Work in process-Dept 1 T -account is the same $\$ 32,000$ that is shown on the process costing schedule as "Total cost of ending inventory."

Work in process - Dept. 1

Work in process - Dept. 1

The Blue Tide Company manufactures its product in a single process. The following information is available:

Work in process inventory, Jan. 1	$-0-$ units
Units started in production	18,000 units
Work in process inventory, Dec. 31	6,000 units
Production costs:	$\$ 367,500$
Direct materials	$\$ 200,000$
Direct labor	$\$ 223,000$
Manufacturing overhead	

The units still in process are 45% complete with respect to direct materials and 35% complete with respect to conversion costs.

1. Summarize the flow of physical units.
2. Compute the output in equivalent units.
3. Compute the cost per equivalent unit.
4. Assign costs to units completed and units in ending inventory

The Made Rite Shoe Corporation uses a process costing system. In the Cutting Department, 4,000 units were started and by the end of the period, all but 400 units had been completed. The 400 units were 80% complete regarding materials and 40% complete regarding conversion costs. Costs added during the current period include $\$ 66,640$ for materials and $\$ 70,312$ for conversion.

1. Summarize the flow of physical units.
2. Compute the output in equivalent units.
3. Compute the cost per equivalent unit.
4. Assign costs to units completed and units in ending inventory

CJ Company reported that during the last month 50,000 units were completed and 3,600 units were in work in process the end of the month. If the ending work in process inventory was 75% complete as to direct materials and 25% complete as to conversion costs, how much would the equivalent units of production for direct materials, conversion be for the last month?

1. Flow of production							
Beginning work in process	$?$						
Started in production	?		2. Equivalent units	Total			
Total inputs	$\underline{53600}$	Materials	50000				
Completed and transferred out	50000	50000	$3600 \times 25 \%=900$				
Ending work in process	3600	$3600 \times 75 \%=2700$					
Total outputs	$\underline{53600}$		$\underline{50900}$				

The Rugger Company uses a process costing system. During the period, 1,400 were started and 1,000 units were completed and transferred out. The units at the end of the period were 60% complete regarding materials and 40% complete regarding conversion. The cost of materials added during the current period amounted to $\$ 31,930$; the conversion costs added during the current period amounted to \$34,800.

1. Summarize the flow of physical units.
2. Compute the output in equivalent units.
3. Compute the cost per equivalent unit.
4. Assign costs to units completed and units in ending inventory

The Blue Tide Company manufactures light bulbs in a single process. The following information is available:

Work in process inventory, Jan. 1	0 units
Units started in production	14,000 units
Units completed and transferred out	9,000 units
Work in process inventory, Dec. 31	5,000 units
Production costs:	
Direct materials	$\$ 27,000$
Direct labor	$\$ 22,000$
Manufacturing overhead	$\$ 33,000$

The ending work in process was 90% complete with respect to direct materials and 40% complete with respect to conversion costs.

1. Summarize the flow of physical units.
2. Compute the output in equivalent units.
3. Compute the cost per equivalent unit.
4. Assign costs to units completed and units in ending inventory

1. Flow of production					
Beginning work in process		0			
Started in production		14000	2. Equivalent units		
Total inputs		14000	Materials	Conversion	Total
Completed and transferred out		9000	9000	9000	
Ending work in process		5000	$5000 \times 90 \%=4500$	$5000 \times 40 \%=2000$	
Total outputs		$\underline{14000}$			
Equivalent units			13500	11000	
Cost			27,000	$22000+33,000=55000$	$\underline{82000}$
3. Cost per equivalent unit			$27000 \div 13500=2$	$55000 \div 11000=5$	
4. Assign costs	Completed and transferred		$9000 \times(2+5)=63000$		
	Ending inventory		$(5000 \times 90 \%) \times 2=9000$	$(5000 \times 40 \%) \times 5=10000$	

The Nesting Company manufactures birdhouses in a single manufacturing process. Materials are added at the beginning of the process while conversion costs are incurred uniformly throughout the process.

The following information has been provided by Nesting Company:

Work in process inventory, Jan. 1	$-0-$ units
Units started in production	14,000 units
Work in process inventory, Dec. 31 (35\%)	5,000 units
Production costs:	
Direct materials	$\$ 28,000$
Direct labor	$\$ 12,250$
Manufacturing overhead	$\$ 20,000$

1. Summarize the flow of physical units.
2. Compute the output in equivalent units.
3. Compute the cost per equivalent unit.
4. Assign costs to units completed and units in ending inventory

1. Flow of production					
Beginning work in process		0			
Started in production		14000	2. Equivalent units		
Total inputs		14000	Materials	Conversion	Total
Completed and transferred out		9000	9000	9000	
Ending work in process		5000	5000	$5000 \times 35 \%=1750$	
Total outputs		14000			
Equivalent units			14000	10750	
Cost			28,000	12,250+20,000=32250	$\underline{60250}$
3. Cost per equivalent unit			$28000 \div 14000=2$	$32250 \div 10750=3$	
4. Assign costs	Completed and transferred		$9000 \times(2+3)=45000$		
	Ending inventory		$5000 \times 2=10000$	$(5000 \times 35 \%) \times 3=5250$	

Winter Corporation uses a process costing system. Materials are added at the beginning of the process while conversion costs are incurred uniformly throughout the process.

Beginning work in process inventory (70\%)	33,500 units
Units started in production	325,000 units
Ending work in process inventory (40\%)	58,500 units
Costs contained in beginning work in process inventory	
direct materials	$\$ 117,000$
conversion	$\$ 70,200$
Costs added during current period	$\$ 600,000$
direct materials	$\$ 900,000$
conversion	

1. Summarize the flow of physical units.
2. Compute the output in equivalent units.
3. Compute the cost per equivalent unit.
4. Assign costs to units completed and units in ending inventory

1. Flow of production						
Beginning work in process			33500			
Started in production			325000	2. Equivalent units		
Total inputs			358500	Materials	Conversion	Total
Completed and transferred out			300000	300000	300000	
Ending work in process (40\%)			58500	58500	$58500 \times 40 \%=23400$	
Total outputs			358500			
Equivalent units				358500	323400	
Cost	in beginning work in process			117,000	70,200	187200
	added during current period			600,000	900,000	1500000
Total cost				717,000	970,200	$\underline{1687200}$
3. Cost per equivalent unit				$717000 \div 358500=2$	$970200 \div 323400=3$	
4. Assign costs		Completed and transferred		$300000 \times(2+3)=1500000$		1687200
		Ending inventory		$58500 \times 2=117000$	$(58500 \times 40 \%) \times 3=70200$	

