جامعة المنارة كلية الهندسة الهندسة المعلوماتية

أساسيات الشبكات الحاسوبية

مدرس المقرر أ.د. مثنى علي القبيلي

العام الدراسي 2024-2023

الفصل الدراسي الثاني

- No option field: Replaced by extension header. Result in a fixed length, 40-byte IP header.
- No header checksum: Result in fast processing.
- No fragmentation at intermediate nodes: Result in fast IP forwarding.

- Routing Extended routing, like IPv4 loose list of routers to visit
- Fragmentation Fragmentation and reassembly
- Authentication Integrity and authentication, security
- Encapsulation Confidentiality
- Hop-by-Hop Option Special options that require hop-by-hop processing
- Destination Options Optional information to be examined by the destination node

IPv6 Packet

IPv6 Header Next Header = TCP	ТСР		
IPv6 Header Next Header = Routing	Routing Header Next Header = TCP	ТСР	
IPv6 Header Next Header = Routing	Routing Header Next Header = Fragment	Fragment Header Next Header = TCP	TCP

https://manara.edu.sy/

В	ase	Extension		Extension	Data	
He	ader	Header 1	•••	Header N	Data	
1. Hop-by-Hop (e.g. MLD)						
2.	Dest Opts header (intermediate nodes)					
3.	Routing Header					
4.	Fragment Header					
5. Authentication Header (AH) (~deprecated)						
6.	Encapsulating Security Payload (ESP) header					
7.	Destination Opts header (final destination)					
8. Mobility Header						
				https://manara.edu.sy/		7

3FFE:085B:1F1F:0000:0000:0000:00A9:1234

8 groups of 16-bit hexadecimal numbers separated by ":"

Leading zeros can be removed

:: = all zeros in one or more group of 16-bit hexadecimal numbers

IPSAA→ IPv6 addr. Separated into 2 parts: Network and Interface id.

To determine the number of 0 bits represented by the ":"

- 1. count the number of blocks in the compressed address
- 2. (-) subtract this number from 8
- 3. (*) multiply the result by 16.

*For example

1. FF02::2

- 2. two blocks "FF02" block and "2" block.
- 3. The number of bits expressed by the "::" is 96 (96 = $(8 2) \times 16$).

Zero compression can only be used once in a given address.

• Otherwise, you could not determine the number of 0 bits represented by each instance of "::".

128.91.45.157.220.40.0.0.0.252.87.212.200.31.255

Binary Dotted Decimal	10000000 00000000 128 91	45 157	10010110 01111110 220 40	0 0	11101110 11101010 0 0	252 87	00000000 00001111 212 200	000000000 111111111 31 255
<u>Hexadecimal</u>	0	3	2	6	4	9	6	12
Hexadecimal Straight Hex	0 805B	3 2D9D	2 DC28	6 0000	4 0000	9 FC57	6 D4C8	11 1FFF
Hexadecimal Straight Hex Leading-Zero Suppressed	0 805B 805B	3 2D9D 2D9D	2 DC28 DC28	6 0000 0	4 0000 0	FC57 FC57	6 D4C8 D4C8	15 1FFF 1FFF

Addresses are assigned to interfaces

change from IPv4 model :

Interface 'expected' to have multiple addresses

Unicast

- One address on a single interface
- Delivery to single interface

Multicast

- Address of a set of interfaces
- Delivery to all interfaces in the set

*Anycast

- Address of a set of interfaces
- Delivery to a single interface in the set, typical utilization: DNS

No broadcast addresses

جَامعة الفيارة Types of IPv6 Addresses

Loopback :	::1	
Link Local :	FE80:	
Site Local (private address) :	FECO:	
Multicast :	FF::	
Undetermined address :	0.0.0.0.0.0.0 ou ::	
Adresse Globale :		
- Production network	2001 à 3FFF:	
- Specific integration IPv4 / IPv6	2002:	

18/05/2024

For example:

➢link-local address

FE80:0:0:0:2AA:FF:FE9A:4CA2 → FE80::2AA:FF:FE9A:4CA2.

\blacktriangleright multicast address

- FF02:0:0:0:0:0:2 → FF02::2
- ➢loopback address
 - 0:0:0:0:0:0:0:1 → ::1

https://manara.edu.sy/

- The following types of addresses are unicast IPv6 addresses:
 - Global unicast addresses
 - Link-local addresses
 - Site-local addresses
 - Unique local IPv6 unicast addresses
 - Special addresses

https://manara.edu.sy/

- Equivalent to public IPv4 addresses.
- Globally routable and reachable on the IPv6 portion of the Internet.
- Unlike the current IPv4-based Internet, which is a mixture of both flat and hierarchical routing, the IPv6-based Internet has been designed from its foundation to support efficient, hierarchical addressing and routing.
- The scope, the portion of the IPv6 internetwork over which the address is unique, of a global unicast address is the entire IPv6 Internet.
- Global scoped communication are identified by high-level 3 bits set to 001 (2000::/3)

https://manara.edu.sy/

- Each aggregatable global unicast IPv6 address has three parts:
- Fixed portion set to 001 The three high-order bits are set to 001. The address prefix for currently assigned global addresses is 2000::/3.
- Global Routing Prefix Site Prefix
 - Site prefix assigned to an organization (leaf site) by a provider should be at least a /48 prefix = 45 + high-order bits (001).
 - /48 prefix represents the high-order 48-bit of the network prefix.
 - prefix assigned to the organization is part of the provider's prefix.
- Subnet-id Site
 - With one /48 prefix allocated to an organization by a provider, it is possible for that organization to enable up to 65,535 subnets (assignment of 64-bit's prefix to subnets).
 - The organization can use bits 49 to 64 (16-bit) of the prefix received for subnetting.
- Interface-id Host
 - · The host part uses each node's interface identifier.
 - This part of the IPv6 address, which represents the address's low-order 64-bit, is called the interface ID.

Global Unicast Address: Example

2001:0410:0110::/48 is assigned by a provider

2001:0410:0110:0002::/64 network subnet within the organization

2001:0410:0110:0002:0200:CBCF:1234:4402 - node address within the subnet

Representation	Values
Range	2xxx:xxxx:xxxx:xxxx:xxxx:xxxx/3
First address of the range	2000:0000:0000:0000:0000:0000:0000
Last address of the range	3FFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF
Binary format	High-order 3-bit is set to 001

https://manara.edu.sy/

There are two types of local-use unicast addresses:

- 1. Link-local addresses
 - used between on-link neighbors and for Neighbor Discovery Processes.
- 2. Site-local addresses
 - used between nodes communicating with other nodes in the same site.

<u>مامعة</u> Link-local Unicast Address

- Used only between nodes connected on the same local link.
- When an IPv6 stack is enabled on a node, one link-local address is automatically assigned to each interface
 of the node at boot time.
- IPv6 link-local prefix FE80::/10 is used and the interface identifier in Extended Unique Identifier 64 (EUI-64) format is appended as the address's low-order 64-bit.
- Bits 11 through 64 are set to 0 (54-bit).
- · Link-local addresses are only for local-link scope and must never be routed between subnets within a site.

https://manara.edu.sy/

21

Link-local unicast address

Representation	Value
Preferred format	FE80:0000:0000:0000:0000:0000:0000/10
Compressed format1	FE80:0:0:0:0:0:0:0/10
Compressed format	FE80::/10
Binary format	High-order 10-bit is set to 1111 1110 10

- Because the low-order 64-bit of the link-local address is the interface identifier itself, the length of the link-local prefix is based on a 64-bit length (/64).
- In IPv6, a node having an aggregatable global unicast address on a local link uses the link-local address of its default IPv6 router rather than the router's aggregatable global unicast address.
- If network renumbering must occur, meaning that the unicast aggregatable global prefix is changed to a new one, the default router can always be reached using the link-local address.
- Link-local addresses of nodes and routers do not change during network renumbering.

- Site-local addresses are equivalent to the IPv4 private address space (10.0.0.0/8, 172.16.0.0/12, and 192.168.0.0/16).
- Private intranets that do not have a direct, routed connection to the IPv6 Internet can use site-local addresses without conflicting with global unicast addresses.
- Site-local addresses are not reachable from other sites, and routers must not forward site-local traffic
 outside the site.
- Site-local addresses can be used in addition to global unicast addresses.
- The scope of a site-local address is the site.
- A site is an organization network or portion of an organization's network that has a defined geographical location (such as an office, an office complex, or a campus).

جَامعة المَنارِقِ Site-Local Address

- Unlike link-local addresses, site-local addresses are not automatically configured and must be assigned either through stateless or stateful address configuration processes.
- May be assigned to any nodes and routers within a site.

- Global
- Link-local (FE80::/10)
 - Routers do not forward beyond link
- Site-local (FEC0::/10) (deprecated)
 - Routers do not forward beyond site
- Multicast (FF00::/8)
 - no broadcast in IPv6
 - FF02::1 (Link-local all-nodes address)
 - FF02::2 (Link-local all-routers address)
- Null = :: (:: = string of zero hextets)
- Loopback = ::1