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DA‘V The Definite integral

R A, T

The function f(x) is the integrand.

Upper limit of integration
b ~
Integral sign

] f(x)dx”

a

Lower limit of integration = v

Integral of f from a to b

x 15 the variable of integration.

When you find the value
of the integral, you have
evaluated the integral.
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[ZV The Definite integral

e THEOREM 4.5 The Definite Integral as the Area of a Region

If fis continuous and nonnegative on the closed interval [a, b], then the area
of the region bounded by the graph of £, the x-axis, and the vertical lines
x=aandx = bis

-:l'\.
i

b
Area = j flx) dx. f

‘ﬂ' b
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rules satisfied by definite integrals

mu a b
el 1. Order of Integration: f fix)dx = = / filx) dx A definition
b a
“ A delinitior
2. Zero Width Interval: f fix)de =0 " __w__: : ,.Il” -;1x-..~:..~
b b
3. Constant Multiple: f kfix)dx = k| flx)dx Any constant k

b b b
4. Sum and Difference: f (fix) £ glx))dx = f fix) de * f 2(x) dx

t c C
5. Additivity: [ flx) dx + [ flx) dx = / flx) dx

Nl Nl
ﬁ. Domination: If f(x) = g(x)on [a. b] TJ'lenf F(x) dx Ef 2(x) dx.

b
If _f{I}I = () on [ﬂ'.. b] thﬂﬂf _f{.ﬁf}l dx = (. Special case
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S THEOREM Continuity Implies Integrability
If a function fis continuous on the closed interval [a, b], then fis integrable
on [a, b]. That is, [ f(x) dx exists.

THEOREM . . - The Fundamental Theorem of Calculus

If a function fis continuous on the closed interval [a, b] and F is an
antiderivative of f on the interval [a, b], then

f}f{x} dx = F(b) — Fl(a).

1. Find an antiderivative F of f, and
2. Calculate the number F(b) — F(a), which 1s equal to Jr :‘: f(x) dx.
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sec x tan x dx = sec .1':|

o
S1M X

o

sin — s =0—-—0=20

0

—m /4

= SEC X lan x

= sec 0 — sec (-E) =1 - 32

4 i 4
(c) Svi-L)ax=|vr+1
A2 x : * 1

4

= {4}3f3 + %} — l{l:ﬁﬁ + =

—[8+1]—[5] =4
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2
EXAMPLE Evaluate 2x — 1] dx.
0
Solution
e {-—(l\' - 1), x< %1
2x = 1, X =3

From this, you can rewrite the integral in two parts.

2 1/2 2
f |2x — 1|dx = f —(2x — 1) dx + f (2x — 1) dx
0 0 !

/2

1/2 2
= [—,\'2 +.\'] + [x3 —x]
0 1/2
kil ~ E 1
=[-=+=-)]-0+0+(4-2)—-|{-—=
( 1 2) (0+0) + (4 ) (4 2)
D
I

[ZV The Fundamental Theorem of Calculus

y=—(2x—-1) y=2x-1

The definite integral of y on [0, 2] is 3.
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[Z\y Using the Fundamental Theorem to Find Area

qu:l the area of the region bounded by the graph of

y=2x-=3x+2

the x-axis, and the vertical lines x = 0 and x = 2, as shown in Figure 4.29.

Solution Note that y > 0 on the interval [0, 2].

Area = J (2x* — 3x + 2) dx
0

(23 32
13 2
_ (16 _¢
\ 3
_ 10
3

2

+ lr]

0

+4)—(ﬂ—ﬂ+ﬂ}

[ntegrate between x = 0 and x

Find antiderivative.

Apply Fundamental Theorem.

Simplify.

- "}

[-1.' =2l Ax ¢+ 1-]
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vl Definite integral Substitutions

R A, T

THEOREM 7 —Substitution in Definite Integrals

If g'is continuous on the interval [a, b]| and f is continuous on the range of

2(x) = u, then

b gik)
f flg(x)) - g'(x) dx =[
i £la)

flu) du.

!
EXAMPLE 1 Evaluate f 32V + 1dx.
-1
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vl Definite integral Substitutions

R A, T

letu = x* + 1, du = 3x° dx.

|
f 3.1'2\'#{1‘3 + 1 dx Whenx =—1l,u=(—-1+1=0.

Whenx=1l.u=(1»+ 1= 2.
fmm

_ 2 ap | .
12 } Evaluate the new definite integral.
()

- 3"

=3[z - 0] = 3[2va) = 12

| 2

https://manara.edu.sy/


https://manara.edu.sy/

vl Definite integral Substitutions

o)liaJl
/4
tan x dx
—r (4
/4 w4
B sin x
/ tanxdx—/ cos x dx
— /4 — /4
V2/2 Let u = cos x, du = —sin x dx.
— du When x = -7 /4, u = V2/2.
V2/2 “ Whenx =7 /4, u = V2/2.
V2/2
= —In ‘M‘ ] =0 [ntegrate, zero width interval
V2/2
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vl Definite integral Substitutions

deol ~

o)liaJi 7T /2 )
2 SIN X COS X
5 de
o (I + sin“x)

/2 . 2
/ 251nxcnsxdx=f Ldu
o (1 + sin®x)’ oo

Let u =
When x
When x

1

+ sm-x.du = 2 sin x cos x dx.

D.u = 1.

w2, u=2.
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vl Definite integral Substitutions

........... 5
f 2Z—3 .
3 Ve —3x + 1

H=x"—3x+ 1. du = (2x — 3) dx;

H=1lwhenx=3 u=11 whenx =35

5
f 2 — 3
3 Vil —3x 4+ 1 d

<.|'“"‘

-/ %
/ i

-‘ = 2( V1l — ]} == 4.63. Table 8.1, Formula 2 []
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Evaluating Definite Integrals by Parts

Integration by Parts Formula for Definite Integrals

b b b
/ fx)g'(x) dx = f(x)g(x)] - f fi(x)g(x) dx

https://manara.edu.sy/
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LiaJl
'''''''' - EXAMPLE 6 Find the area of the region bounded by the curve y = x¢™ and the
x-axis from x = 0 to x = 4.

Solution The region is shaded in Figure 8.1. Its area is

4 *
/ xe ¥ dx. 1
0

Letu = x,dv = ¢ "dx,v = —¢ ", and du = dx. Then, 0.5F y=xe "

4 4
. _.14 .

xe Ydx = —xe ' |, — —e ) dx 1 I I |

/u I fn (=¢7) 3 1 2 3

4
[—de™ — (—0e™) ] +f e dx
0

_'l_
— A4 _ x4

=4t — (et —e=1—-5" -
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PA‘V The Definite integral

''''''''''' f V1 + cos 4x dx.

Solution To eliminate the square root, we use the identity

+ S
cos’ f = I .:2:.:.-; 20 or 1 + cos 20 = 2 cos? 8.

With # = 2x, this becomes
1 + cos 4x = 2 cos? 2x.

Therefore,

/4 /4 /4
/ V1 +c054xcir=/ Vzﬂﬂﬂzhd_r:/ V2V cos? 2x dx
0 0 0

wfd /4
=\/i/ |C052,r|rir=\/i/ cos 2x dx
0 0
. 4
=V'E[smlrJ =¥[1—D]=\/E
0

5 N

5 -

cos 2y = 0 on
[0, 7/4]
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DAV The Definite integral

I;/Z sin? 26 cos> 26 d6

J:Tﬁ sin’ 26 cos® 26 d6 = J‘:’/z sin? 26 (l —sin® 2@) cos 26 do

2 2 -3 -5
:J.H/ sin226 cos 29d9—jx/ sin? 26 cos 20 dﬁz[i-M—i-M} =0
0 0 273 27 5

https://manara.edu.sy/


https://manara.edu.sy/

[Z\y The Definite integral

LR LT T

/3 cosd x
-/6 ~/SINX

Evaluate f

/3

EUS X
dx.
2/6 ~/SIn X
I"".'.‘T;'rﬁ- 2
COS= X COS X
dx = dx

Jae  /SInx

_ ™3 (1 — sin2 x)(cos x) "
Jase V' sin x
/3
_J [(sin x)~1/2 — (sin x)?/2] cos x dx
/6
_ [{sm x)'/2 (sin x)ﬂfj“’f?‘
].,'!2 SKZ /6
1/2 ) ﬁ 5/2 39
p— _ ] — —_ _|_ -
()" -5(2)" - v
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[Z\y The Definite integral

L=

6jligJi

e A— : "

Jl _|_€“—u—1n(1+e}+C.
2 " Let u = —x?. Then du = —2x dx, and you have
Evaluate
J‘; 1+E_xzdx‘ o :ad.l':_l _zx‘ixﬂ
1 + e 211+ e
= —%[—xz —n(1 + ¢ 2)| + C
1

2

[x2 + In(1 + )] + C

So, the value of the definite integral is

X

2
J;, I + &

2

2

s dx = 1[.1-2 +1In(1 + e—-fz)] = %[4 +1In(1 + ¢4 — In2]

0
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DA‘V Definite Integrals of Symmetric Functions

R A, T

> X
—d V(l

= 0 a
(a) (b)
FIGURE - (a) For f an even function, the integral from —a to a is twice the

integral from O to a. (b) For f an odd function, the integral from —a to a equals 0.
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Definite Integrals of Symmetric Functions

THEOREM  Let f be continuous on the symmetric interval [—a, a].

(a) If f is even, then / f(x)dx = / f(x)dx.
—a 0

(b) If f 1s odd, then/ f(x)dx = 0.

2
EXAMPLE Evaluata/ (x* — 4x% + 6) dx.
-2
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PA‘V Definite Integrals of Symmetric Functions

LR LT T

Solution Since f(x) = x* — 4x* + 6 satisfies f(—x) = f(x), it is even on the symmet-
ric interval [—2, 2], so

4

/Lﬁ-%ﬁ+m¢=2 (x* — 4x2 + 6)dx
-2

0

- :
=2 I——&.J:E—Fﬁx

_5 3 ()

(32 32 232
_2"\?_?—'_12 —F. L]
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PA‘V Areas Between Curves

LR LT T

DEFINITION If f and g are continuous with f(x) = g(x) throughout [a, b],
then the area of the region between the curves y = f(x) and y = g(x) from
a to b is the integral of (f — g) from a to b:

b
A =f [ f(x) — g(x)] dx.

LU'pper curve
¥ = flx)

Lower curve
v = glx)
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DA‘V Areas Between Curves

R A, T

EXAMPLE 4 Find the area of the region enclosed by the parabola y = 2 — x? and

the line y = —x.

Solution  First we sketch the two curves (Figure 5.28). The limits of integration are
found by solving y = 2 — x* and y = —x simultaneously for x.

2 —xt=—x Equate fix) and g(x).
XX—x-2=0 Rewnte.
x+Dx—-2)=0 Factor.
X= —1., x =2 Solve.
The region runs from x = —1 to x = 2. The limits of integration are a = —1, b = 2.

(=1.1)
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PA‘V Areas Between Curves

LR LT T

The area between the curves i1s

£ 2
f [f(x) — g(x)] dx f [(2 — x2) — (—x) ] dx

1

3 |2
f{2+x—x?}dx {lr-l———%

-1

_ 4_8) _ [,y L1, 1)y_9
'(‘Hz 3) (“+3+3)‘2‘
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DA‘V Areas Between Curves

dsola

¥ it

hhhhhhh EXAMPLE 5 Find the area of the region in the first quadrant that is bounded above by

y = \/x and below by the x-axis and the line y = x — 2.
Solution
4
"'V{; =x—2 Equate fix) and g(x). Area =/[U; —x+ 2} A
xX=(x — 2]2 - IE — 4y 4+ 4 Square both sides. | )
x> —5x+4=0 Rewrile.
x—1lix—4)=20 Factor.

X = 1., x =4, Solve.
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DA‘V Areas Between Curves

B ’ For0) = x = 2: f{x}—g[r}=*&=‘g—ﬂ=ﬂ
For2 = x = 4; f{r}—g[r}=‘~.ﬂ—{r—l}=‘v’§—r+l

2 4
Tﬂtalﬂrﬁa=/ﬂdx+f(*v§—r+2]ldx
0 2

area of A area ol B

4

- [2en] 4 [20n - £ 4

2

%[z:ﬁﬁ -0+ @{4}3,@ — 8 + 3) — @{zﬁf -2+ 4)

10)

2 _ 10
=38 —2=7.
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DEFINITION The volume of a solid of integrable cross-sectional area A(x)
from x = a to x = b is the integral of A from a to b,

h
V= f A(x) dx.

Cross-section S(x)
~ with area A(x)
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[Zv Solids of Revolution: the Disk Method

R A, T

Volume by Disks for Rotation About the x-Axis
wbr

o
1f=/ A(x) dx =] [ R(x)]? dx.

V=r [ [R@)P dx

_______

Rix)s

¥
i b |

Horizontal axis of revolution
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L EXAMPLE

Find the volume of the solid formed by revolving the region bounded by the graph of
flx) = sinx

and the x-axis (0 = x < ) about the x-axis.

flx)= +/sinx

Solid of revolution 17

= \

-1+ Flane region

|

|
. o
i 1 \ % I
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[Z\y Solids of Revolution: the Disk Method

i - Solution From the representative rectangle in the upper graph in Figure
can see that the radius of this solid 1s

R(x) = f(x)
= .J/sin x.

S0, the volume of the solid of revolution is

b T
V = J [R{I)]E dx = r {q s1n I]I dx Apply disk method.

J0

[".I.'
= q| sinxdx Simplify.
J10

T
= 'JT|:— COs I:l Integrate.
0

m(l + 1)

= 2.

, you

https://manara.edu.sy/


https://manara.edu.sy/

2= EXAMPLE

Find the volume of the solid formed by revolving the region bounded by
flx) =2 — x2
and g(x) = 1 about the line v = 1, as shown in Figure

I|_I

fly=2-x7 ¥
Solid of
glx)=1 revolution

] 1!{'[1]

Plane region 2

£
TN A L
' Ay > flx)
:Ams ut’l | , o(x)
s revolution i
| L, -r

[
-
-1 1
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[ZV

R A, T

Solids of Revolution: the Disk Method

Solution By equating f(x) and g(x), you can determine that the two graphs intersect
when x = +1. To find the radius, subtract g(x) from f(x).

R(x) = flx) — glx)
= (2 —x?) -1
=1 —x?

Finally, integrate between — 1 and 1 to find the volume.

b |
V= TTJ [R{I]]E dx = m r (1 — x*)dx Apply disk method.
a +—1
['l
= T (1 — 2x* + x*) dx Simplhitfy.
+—1
233 x5!
= 'JT|:I - 3 + 5 ]_| Integrate.
16w .
15
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Volume by Washers for Rotation About the x-Axis

Volume by Washers for Rotation About the x-Axis

\J"=/bd(r}dx =fb7r([.ﬁ’[r}]2 — [r(x)]?) dx.

il il

4

L R(x)4 » r{x)

I - o

a b
Plane region
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Volume by Washers for Rotation About the x-Axis

e EXAMPLE

Find the volume of the solid formed by revolving the region bounded by the graphs of
y = Jx and y = x* about the x-axis, as shown in Figure @

Solid of
revolution

= -1. — 1 -

Plane region

Solid of revolution
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Volume by Washers for Rotation About the x-Axis

6)lioJl Solution In Figure ', you can see that the outer and inner radii are as follows.
R[I:l = \//;_E Outer radius
}"[I:I = x2 Inner radius

Integrating between 0 and 1 produces

b
V= WJ ([R(-‘f]]z — [F(-‘f]] 2) dx Apply washer method.
= J (Va) = (2] dx
— j (x — x¥) dx Simplify.
= [E — ?]n Integrate.
3w, n
10
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A ) DEFINITION If f' is continuous on [a, b ], then the length (arc length) of the
curve v = f(x) from the point A = (a, f(a)) to the point B = (b, f(b)) 1s the

value of the integral

h b dy\?
L=/ V1 + [f’(_:;)]%fx:/ \f1 + (ﬁ) dx. (3)

n | ¥ =f(x)
5

5 = length of
curve from .
atob

https://manara.edu.sy/
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Find the length ot the curve
V2 3y
3 o b

y =

=

Solution We use Equation (3) witha = 0, b = 1, and

y = 4\:;/?{3’,2 1

dy 4\/5 3

— = =X == 12 = 1/2
I 3 5% 2V 2x

(2V2x12)2 = gx.

o~
=S
—
b=

[l

v = 0.89

https://manara.edu.sy/
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DA‘V Length of a Curve y = AX)

ﬂJ'—l—ﬂJl The length of the curve over x = O tox = 1 1s

R A, T

Eq. (3) with

L-/\/ .i::-/ V1 + 8xdxe ¢ UL
letu = 1 + Bx,

integrate, and

L1+ 8x )3f”] == =217, replace u by
0 6 | + &x.

EXAMPLE 2 Find the length of the graph of

3
f[,r]=‘;—+l ]l =x = 4.

https://manara.edu.sy/
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Solution A graph of the function is shown in Figure* .. To use Equation (3), we find

. 1
fo =7 -3
50 s
12 — 1) _ EA A §
1+ [f'(0)] 1+(4 x?) 1+(1ﬁ R ,
Cxr 1,1 (2 Y
_1ﬁ+2+x4_(4+x1)'

The length of the graph over [ 1,4 ] is

4 4 7
o [T [(© s o
1 | X
2 L o fed 1y (1L \_72_ 0
12 -*JI_ 12 4 12 12

https://manara.edu.sy/
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EXAMPLE Find the length of the curve

y = %(E" + e), 0=x=2.

Solution We use Equation (3) witha = 0, b = 2, and

]' X —X
2(&' + )

]' r _ —X
5 (e — &™)

i(el" — 2 + )

l x 2y — l X X ’
4(e + 2+ e ]—[Z[E + e ]“

https://manara.edu.sy/


https://manara.edu.sy/

L

2 >
3 dy\? 2 Eq. (3) with
l + — (I.t = l (8‘ + e—‘) d“ 8= [') = :
0 dx o 2

_.1 T —.\‘z_l ! R e
—5[(’ e‘ ——2(_e e ) . B

https://manara.edu.sy/
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LILEE PSS et

Consider the region bounded by the graphs of y = Inx,y = 0,
and x = e.

a. Find the area of the region.

b. Find the volume of the solid formed by revolving this region
about the x-axis.

https://manara.edu.sy/
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LILEE PSS et

(@) A= JTIn xdy=[xIn x]f - Iled.\' 21

=(elne-1ln1)-[x] =e-(e-1) =1

® 7= [ xnnia - ,,([x(lnx)z ]: = Lezm.rdx') | /_[«

- P(e(lne)z ~1(In1)> )-([2xlnx]f_j‘lezdr)]

—

— 7 e-((zeln e—-2(1) In 1)-[2x]f)] =7[e-(2¢e-(2e-2))|=7(e-2)

https://manara.edu.sy/
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R, T

Thank you for your attention
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