

Calculus 1

Dr. Yamar Hamwi

Al-Manara University

2022-2023

Calculus 1

Lecture 10

Integrals

Chapter 5 Integrals

- 5.7 The Definite integral
- 5.8 The Fundamental Theorem of Calculus
- 5.9 Definite integral Substitutions
- 5.10 Evaluating Definite Integrals by Parts
- 5.11 Areas Between Curves
- 5.12 Solids of Revolution: the Disk Method
- 5.13 Volume by Washers for Rotation About the x-Axis
- 5.14 Length of a Curve y = f(x)

THEOREM 4.5 The Definite Integral as the Area of a Region

If f is continuous and nonnegative on the closed interval [a, b], then the area of the region bounded by the graph of f, the x-axis, and the vertical lines x = a and x = b is

Area =
$$\int_{a}^{b} f(x) dx.$$

rules satisfied by definite integrals

1. Order of Integration:
$$\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$$

A definition

2. Zero Width Interval:
$$\int_{a}^{a} f(x) dx = 0$$

A definition when f(a) exists

3. Constant Multiple:
$$\int_{a}^{b} kf(x) dx = k \int_{a}^{b} f(x) dx$$

Any constant k

4. Sum and Difference:
$$\int_a^b (f(x) \pm g(x)) dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx$$

5. Additivity:
$$\int_a^b f(x) dx + \int_b^c f(x) dx = \int_a^c f(x) dx$$

\(\int \) Domination: If
$$f(x) \ge g(x)$$
 on $[a, b]$ then $\int_a^b f(x) \, dx \ge \int_a^b g(x) \, dx$.

If $f(x) \ge 0$ on $[a, b]$ then $\int_a^b f(x) \, dx \ge 0$. Special case

The Fundamental Theorem of Calculus

THEOREM Continuity Implies Integrability

If a function f is continuous on the closed interval [a, b], then f is integrable on [a, b]. That is, $\int_a^b f(x) dx$ exists.

THEOREM San The Fundamental Theorem of Calculus

If a function f is continuous on the closed interval [a, b] and F is an antiderivative of f on the interval [a, b], then

$$\int_a^b f(x) \, dx = F(b) - F(a).$$

- 1. Find an antiderivative F of f, and
- 2. Calculate the number F(b) F(a), which is equal to $\int_a^b f(x) dx$.

The Fundamental Theorem of Calculus

(a)
$$\int_0^{\pi} \cos x \, dx = \sin x \Big]_0^{\pi}$$
$$= \sin \pi - \sin 0 = 0 - 0 = 0$$

(b)
$$\int_{-\pi/4}^{0} \sec x \tan x \, dx = \sec x \Big]_{-\pi/4}^{0}$$
$$= \sec 0 - \sec \left(-\frac{\pi}{4}\right) = 1 - \sqrt{2}$$

(c)
$$\int_{1}^{4} \left(\frac{3}{2}\sqrt{x} - \frac{4}{x^{2}}\right) dx = \left[x^{3/2} + \frac{4}{x}\right]_{1}^{4}$$
$$= \left[(4)^{3/2} + \frac{4}{4}\right] - \left[(1)^{3/2} + \frac{4}{1}\right]$$
$$= \left[8 + 1\right] - \left[5\right] = 4$$

The Fundamental Theorem of Calculus

EXAMPLE

Evaluate
$$\int_0^2 |2x - 1| \, dx.$$

Solution

$$|2x - 1| = \begin{cases} -(2x - 1), & x < \frac{1}{2} \\ 2x - 1, & x \ge \frac{1}{2} \end{cases}$$

From this, you can rewrite the integral in two parts.

$$\int_{0}^{2} |2x - 1| dx = \int_{0}^{1/2} -(2x - 1) dx + \int_{1/2}^{2} (2x - 1) dx$$

$$= \left[-x^{2} + x \right]_{0}^{1/2} + \left[x^{2} - x \right]_{1/2}^{2}$$

$$= \left(-\frac{1}{4} + \frac{1}{2} \right) - (0 + 0) + (4 - 2) - \left(\frac{1}{4} - \frac{1}{2} \right)$$

$$= \frac{5}{2}$$

The definite integral of y on [0, 2] is $\frac{5}{2}$.

Using the Fundamental Theorem to Find Area

Find the area of the region bounded by the graph of

$$y = 2x^2 - 3x + 2$$

the x-axis, and the vertical lines x = 0 and x = 2, as shown in Figure 4.29.

Solution Note that y > 0 on the interval [0, 2].

Area =
$$\int_0^2 (2x^2 - 3x + 2) dx$$
=
$$\left[\frac{2x^3}{3} - \frac{3x^2}{2} + 2x \right]_0^2$$
=
$$\left(\frac{16}{3} - 6 + 4 \right) - (0 - 0 + 0)$$
=
$$\frac{10}{3}$$

Integrate between x = 0 and x = 2.

Find antiderivative.

Apply Fundamental Theorem.

Simplify.

THEOREM 7—Substitution in Definite Integrals

If g' is continuous on the interval [a, b] and f is continuous on the range of g(x) = u, then

$$\int_a^b f(g(x)) \cdot g'(x) \ dx = \int_{g(a)}^{g(b)} f(u) \ du.$$

EXAMPLE 1 Evaluate
$$\int_{-1}^{1} 3x^2 \sqrt{x^3 + 1} dx$$
.

$$\int_{-1}^{1} 3x^2 \sqrt{x^3 + 1} \, dx$$

Let
$$u = x^3 + 1$$
, $du = 3x^2 dx$.
When $x = -1$, $u = (-1)^3 + 1 = 0$.
When $x = 1$, $u = (1)^3 + 1 = 2$.

$$= \int_0^2 \sqrt{u} \, du$$

$$=\frac{2}{3}u^{3/2}\bigg]_0^2$$

Evaluate the new definite integral.

$$= \frac{2}{3} \left[2^{3/2} - 0^{3/2} \right] = \frac{2}{3} \left[2\sqrt{2} \right] = \frac{4\sqrt{2}}{3}$$

$$\int_{-\pi/4}^{\pi/4} \tan x \, dx$$

$$\int_{-\pi/4}^{\pi/4} \tan x \, dx = \int_{-\pi/4}^{\pi/4} \frac{\sin x}{\cos x} \, dx$$

$$= -\int_{\sqrt{2}/2}^{\sqrt{2}/2} \frac{du}{u}$$
Let $u = \cos x$, $du = -\sin x \, dx$.
When $x = -\pi/4$, $u = \sqrt{2}/2$.
When $x = \pi/4$, $u = \sqrt{2}/2$.
$$= -\ln|u| \int_{\sqrt{2}/2}^{\sqrt{2}/2} = 0$$
Integrate, zero width interval

$$\int_0^{\pi/2} \frac{2\sin x \cos x}{(1 + \sin^2 x)^3} dx$$

$$\int_0^{\pi/2} \frac{2\sin x \cos x}{(1+\sin^2 x)^3} dx = \int_1^2 \frac{1}{u^3} du$$
$$= -\frac{1}{2u^2} \Big|_1^2$$
$$= -\frac{1}{8} - \left(-\frac{1}{2}\right) = \frac{3}{8}$$

Let
$$u = 1 + \sin^2 x$$
, $du = 2 \sin x \cos x \, dx$.
When $x = 0$, $u = 1$.
When $x = \pi/2$, $u = 2$.

$$\int_{3}^{5} \frac{2x - 3}{\sqrt{x^2 - 3x + 1}} \, dx.$$

$$\int_{3}^{5} \frac{2x - 3}{\sqrt{x^2 - 3x + 1}} dx = \int_{1}^{11} \frac{du}{\sqrt{u}} \qquad u = x^2 - 3x + 1, du = (2x - 3) dx;$$

$$u = 1 \text{ when } x = 3, u = 11 \text{ when } x = 5$$

$$= \int_{1}^{11} u^{-1/2} du$$

$$= 2\sqrt{u} \Big|_{1}^{11} = 2(\sqrt{11} - 1) \approx 4.63. \text{ Table 8.1, Formula 2}$$

Evaluating Definite Integrals by Parts

Integration by Parts Formula for Definite Integrals

$$\int_{a}^{b} f(x)g'(x) \, dx = f(x)g(x) \bigg]_{a}^{b} - \int_{a}^{b} f'(x)g(x) \, dx$$

Evaluating Definite Integrals by Parts

EXAMPLE 6 Find the area of the region bounded by the curve $y = xe^{-x}$ and the x-axis from x = 0 to x = 4.

Solution The region is shaded in Figure 8.1. Its area is

$$\int_0^4 xe^{-x} dx.$$

Let u = x, $dv = e^{-x} dx$, $v = -e^{-x}$, and du = dx. Then,

$$\int_0^4 xe^{-x} dx = -xe^{-x} \Big]_0^4 - \int_0^4 (-e^{-x}) dx$$

$$= \left[-4e^{-4} - (-0e^{-0}) \right] + \int_0^4 e^{-x} dx$$

$$= -4e^{-4} - e^{-x} \Big]_0^4$$

$$= -4e^{-4} - (e^{-4} - e^{-0}) = 1 - 5e^{-4} = 0$$

$$\int_0^{\pi/4} \sqrt{1 + \cos 4x} \, dx.$$

Solution To eliminate the square root, we use the identity

$$\cos^2 \theta = \frac{1 + \cos 2\theta}{2}$$
 or $1 + \cos 2\theta = 2\cos^2 \theta$.

With $\theta = 2x$, this becomes

$$1 + \cos 4x = 2\cos^2 2x.$$

Therefore,

$$\int_0^{\pi/4} \sqrt{1 + \cos 4x} \, dx = \int_0^{\pi/4} \sqrt{2 \cos^2 2x} \, dx = \int_0^{\pi/4} \sqrt{2} \sqrt{\cos^2 2x} \, dx$$

$$= \sqrt{2} \int_0^{\pi/4} |\cos 2x| \, dx = \sqrt{2} \int_0^{\pi/4} \cos 2x \, dx \qquad \frac{\cos 2x \ge 0 \text{ on }}{[0, \pi/4]}$$

$$= \sqrt{2} \left[\frac{\sin 2x}{2} \right]_0^{\pi/4} = \frac{\sqrt{2}}{2} \left[1 - 0 \right] = \frac{\sqrt{2}}{2}.$$

$$\int_0^{\pi/2} \sin^2 2\theta \, \cos^3 2\theta \, d\theta$$

$$\int_0^{\pi/2} \sin^2 2\theta \cos^3 2\theta \, d\theta = \int_0^{\pi/2} \sin^2 2\theta \left(1 - \sin^2 2\theta\right) \cos 2\theta \, d\theta$$

$$= \int_0^{\pi/2} \sin^2 2\theta \cos 2\theta \, d\theta - \int_0^{\pi/2} \sin^4 2\theta \cos 2\theta \, d\theta = \left[\frac{1}{2} \cdot \frac{\sin^3 2\theta}{3} - \frac{1}{2} \cdot \frac{\sin^5 2\theta}{5}\right]_0^{\pi/2} = 0$$

Evaluate
$$\int_{\pi/6}^{\pi/3} \frac{\cos^3 x}{\sqrt{\sin x}} dx.$$

$$\int_{\pi/6}^{\pi/3} \frac{\cos^3 x}{\sqrt{\sin x}} dx = \int_{\pi/6}^{\pi/3} \frac{\cos^2 x \cos x}{\sqrt{\sin x}} dx$$

$$= \int_{\pi/6}^{\pi/3} \frac{(1 - \sin^2 x)(\cos x)}{\sqrt{\sin x}} dx$$

$$= \int_{\pi/6}^{\pi/3} \left[(\sin x)^{-1/2} - (\sin x)^{3/2} \right] \cos x dx$$

$$= \left[\frac{(\sin x)^{1/2}}{1/2} - \frac{(\sin x)^{5/2}}{5/2} \right]_{\pi/6}^{\pi/3}$$

$$= 2\left(\frac{\sqrt{3}}{2} \right)^{1/2} - \frac{2}{5} \left(\frac{\sqrt{3}}{2} \right)^{5/2} - \sqrt{2} + \frac{\sqrt{32}}{80}$$

Evaluate
$$\int_0^2 \frac{x}{1 + e^{-x^2}} dx.$$

$$\int \frac{du}{1 + e^u} = u - \ln(1 + e^u) + C.$$

Let $u = -x^2$. Then du = -2x dx, and you have

Evaluate
$$\int_0^2 \frac{x}{1 + e^{-x^2}} dx.$$
 Let $u = -x^2$. Then $du = -2x dx$, and you have
$$\int \frac{x}{1 + e^{-x^2}} dx = -\frac{1}{2} \int \frac{-2x dx}{1 + e^{-x^2}}$$
$$= -\frac{1}{2} \left[-x^2 - \ln(1 + e^{-x^2}) \right] + C$$
$$= \frac{1}{2} \left[x^2 + \ln(1 + e^{-x^2}) \right] + C.$$

So, the value of the definite integral is

$$\int_0^2 \frac{x}{1 + e^{-x^2}} dx = \frac{1}{2} \left[x^2 + \ln(1 + e^{-x^2}) \right]_0^2 = \frac{1}{2} \left[4 + \ln(1 + e^{-4}) - \ln 2 \right]$$

Definite Integrals of Symmetric Functions

FIGURE: (a) For f an even function, the integral from -a to a is twice the integral from 0 to a. (b) For f an odd function, the integral from -a to a equals 0.

Definite Integrals of Symmetric Functions

THEOREM Let f be continuous on the symmetric interval [-a, a].

(a) If f is even, then
$$\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx.$$

(b) If f is odd, then
$$\int_{-a}^{a} f(x) dx = 0.$$

Evaluate
$$\int_{-2}^{2} (x^4 - 4x^2 + 6) dx$$
.

Definite Integrals of Symmetric Functions

Solution Since $f(x) = x^4 - 4x^2 + 6$ satisfies f(-x) = f(x), it is even on the symmetric interval [-2, 2], so

$$\int_{-2}^{2} (x^4 - 4x^2 + 6) dx = 2 \int_{0}^{2} (x^4 - 4x^2 + 6) dx$$
$$= 2 \left[\frac{x^5}{5} - \frac{4}{3}x^3 + 6x \right]_{0}^{2}$$
$$= 2 \left(\frac{32}{5} - \frac{32}{3} + 12 \right) = \frac{232}{15}.$$

DEFINITION If f and g are continuous with $f(x) \ge g(x)$ throughout [a, b], then the **area of the region between the curves** y = f(x) and y = g(x) from a to b is the integral of (f - g) from a to b:

$$A = \int_a^b [f(x) - g(x)] dx.$$

EXAMPLE 4 Find the area of the region enclosed by the parabola $y = 2 - x^2$ and the line y = -x.

Solution First we sketch the two curves (Figure 5.28). The limits of integration are found by solving $y = 2 - x^2$ and y = -x simultaneously for x.

$$2 - x^2 = -x$$
 Equate $f(x)$ and $g(x)$.

$$x^2 - x - 2 = 0$$
 Rewrite.

$$(x + 1)(x - 2) = 0$$
 Factor.

$$x = -1, \quad x = 2.$$
 Solve.

The region runs from x = -1 to x = 2. The limits of integration are a = -1, b = 2.

The area between the curves is

$$A = \int_{a}^{b} [f(x) - g(x)] dx = \int_{-1}^{2} [(2 - x^{2}) - (-x)] dx$$

$$= \int_{-1}^{2} (2 + x - x^{2}) dx = \left[2x + \frac{x^{2}}{2} - \frac{x^{3}}{3}\right]_{-1}^{2}$$

$$= \left(4 + \frac{4}{2} - \frac{8}{3}\right) - \left(-2 + \frac{1}{2} + \frac{1}{3}\right) = \frac{9}{2}.$$

EXAMPLE 5 Find the area of the region in the first quadrant that is bounded above by $y = \sqrt{x}$ and below by the x-axis and the line y = x - 2.

Solution

$$\sqrt{x} = x - 2$$

$$x = (x - 2)^2 = x^2 - 4x + 4$$

$$x^2 - 5x + 4 = 0$$

$$(x - 1)(x - 4) = 0$$

$$x = 1, \qquad x = 4.$$

Equate f(x) and g(x).

Square both sides.

Rewrite.

Factor.

Solve.

For
$$0 \le x \le 2$$
: $f(x) - g(x) = \sqrt{x} - 0 = \sqrt{x}$
For $2 \le x \le 4$: $f(x) - g(x) = \sqrt{x} - (x - 2) = \sqrt{x} - x + 2$

Total area =
$$\underbrace{\int_{0}^{2} \sqrt{x} \, dx}_{\text{area of } A} + \underbrace{\int_{2}^{4} (\sqrt{x} - x + 2) \, dx}_{\text{area of } B}$$

$$= \left[\frac{2}{3} x^{3/2} \right]_{0}^{2} + \left[\frac{2}{3} x^{3/2} - \frac{x^{2}}{2} + 2x \right]_{2}^{4}$$

$$= \frac{2}{3} (2)^{3/2} - 0 + \left(\frac{2}{3} (4)^{3/2} - 8 + 8 \right) - \left(\frac{2}{3} (2)^{3/2} - 2 + 4 \right)$$

$$= \frac{2}{3} (8) - 2 = \frac{10}{3}.$$

Volumes

DEFINITION The **volume** of a solid of integrable cross-sectional area A(x) from x = a to x = b is the integral of A from a to b,

$$V = \int_{a}^{b} A(x) \, dx.$$

Volume by Disks for Rotation About the x-Axis

$$V = \int_{a}^{b} A(x) \, dx = \int_{a}^{b} \pi [R(x)]^{2} \, dx.$$

Horizontal axis of revolution

EXAMPLE

Find the volume of the solid formed by revolving the region bounded by the graph of

$$f(x) = \sqrt{\sin x}$$

and the x-axis $(0 \le x \le \pi)$ about the x-axis.

Solution From the representative rectangle in the upper graph in Figure , you can see that the radius of this solid is

$$R(x) = f(x)$$
$$= \sqrt{\sin x}.$$

So, the volume of the solid of revolution is

$$V = \pi \int_{a}^{b} [R(x)]^{2} dx = \pi \int_{0}^{\pi} (\sqrt{\sin x})^{2} dx$$
$$= \pi \int_{0}^{\pi} \sin x dx$$
$$= \pi \Big[-\cos x \Big]_{0}^{\pi}$$
$$= \pi (1+1)$$
$$= 2\pi.$$

Apply disk method.

Simplify.

Integrate.

EXAMPLE

Find the volume of the solid formed by revolving the region bounded by

$$f(x) = 2 - x^2$$

and g(x) = 1 about the line y = 1, as shown in Figure

Solution By equating f(x) and g(x), you can determine that the two graphs intersect when $x = \pm 1$. To find the radius, subtract g(x) from f(x).

$$R(x) = f(x) - g(x)$$

= $(2 - x^2) - 1$
= $1 - x^2$

Finally, integrate between -1 and 1 to find the volume.

$$V = \pi \int_{a}^{b} [R(x)]^{2} dx = \pi \int_{-1}^{1} (1 - x^{2})^{2} dx$$
 Apply disk method.

$$= \pi \int_{-1}^{1} (1 - 2x^{2} + x^{4}) dx$$
 Simplify.

$$= \pi \left[x - \frac{2x^{3}}{3} + \frac{x^{5}}{5} \right]_{-1}^{1}$$
 Integrate.

$$= \frac{16\pi}{15}$$

Volume by Washers for Rotation About the x-Axis

Volume by Washers for Rotation About the x-Axis

$$V = \int_{a}^{b} A(x) dx = \int_{a}^{b} \pi \left([R(x)]^{2} - [r(x)]^{2} \right) dx.$$

Volume by Washers for Rotation About the x-Axis

EXAMPLE

Find the volume of the solid formed by revolving the region bounded by the graphs of $y = \sqrt{x}$ and $y = x^2$ about the x-axis, as shown in Figure

Volume by Washers for Rotation About the x-Axis

Solution In Figure ', you can see that the outer and inner radii are as follows.

$$R(x) = \sqrt{x}$$

$$r(x) = x^2$$

Outer radius

Inner radius

Integrating between 0 and 1 produces

$$V = \pi \int_{a}^{b} ([R(x)]^{2} - [r(x)]^{2}) dx$$
$$= \pi \int_{0}^{1} [(\sqrt{x})^{2} - (x^{2})^{2}] dx$$

$$=\pi \int_{0}^{1} (x-x^{4}) dx$$

$$=\pi \left[\frac{x^2}{2} - \frac{x^5}{5}\right]_0^1$$

$$=\frac{3\pi}{10}$$
.

Apply washer method.

Simplify.

Integrate.

DEFINITION If f' is continuous on [a, b], then the **length** (arc length) of the curve y = f(x) from the point A = (a, f(a)) to the point B = (b, f(b)) is the value of the integral

$$L = \int_{a}^{b} \sqrt{1 + [f'(x)]^{2}} dx = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx.$$
 (3)

Find the length of the curve

$$y = \frac{4\sqrt{2}}{3}x^{3/2} - 1, \qquad 0 \le x \le 1.$$

Solution We use Equation (3) with a = 0, b = 1, and

$$y = \frac{4\sqrt{2}}{3}x^{3/2} - 1$$

$$\frac{dy}{dx} = \frac{4\sqrt{2}}{3} \cdot \frac{3}{2}x^{1/2} = 2\sqrt{2}x^{1/2}$$

$$\left(\frac{dy}{dx}\right)^2 = \left(2\sqrt{2}x^{1/2}\right)^2 = 8x.$$

The length of the curve over x = 0 to x = 1 is

$$L = \int_0^1 \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_0^1 \sqrt{1 + 8x} dx$$
 Eq. (3) with $a = 0, b = 1$.
Let $u = 1 + 8x$, integrate, and replace u by $1 + 8x$.

EXAMPLE 2 Find the length of the graph of

$$f(x) = \frac{x^3}{12} + \frac{1}{x}, \qquad 1 \le x \le 4.$$

Solution A graph of the function is shown in Figure . To use Equation (3), we find

$$f'(x) = \frac{x^2}{4} - \frac{1}{x^2}$$

SO

$$1 + [f'(x)]^2 = 1 + \left(\frac{x^2}{4} - \frac{1}{x^2}\right)^2 = 1 + \left(\frac{x^4}{16} - \frac{1}{2} + \frac{1}{x^4}\right)$$
$$= \frac{x^4}{16} + \frac{1}{2} + \frac{1}{x^4} = \left(\frac{x^2}{4} + \frac{1}{x^2}\right)^2.$$

The length of the graph over [1, 4] is

$$L = \int_{1}^{4} \sqrt{1 + [f'(x)]^{2}} dx = \int_{1}^{4} \left(\frac{x^{2}}{4} + \frac{1}{x^{2}}\right) dx$$
$$= \left[\frac{x^{3}}{12} - \frac{1}{x}\right]_{1}^{4} = \left(\frac{64}{12} - \frac{1}{4}\right) - \left(\frac{1}{12} - 1\right) = \frac{72}{12} = 6.$$

EXAMPLE

Find the length of the curve

$$y = \frac{1}{2}(e^x + e^{-x}), \quad 0 \le x \le 2.$$

Solution We use Equation (3) with a = 0, b = 2, and

$$y = \frac{1}{2} \left(e^x + e^{-x} \right)$$

$$\frac{dy}{dx} = \frac{1}{2} \left(e^x - e^{-x} \right)$$

$$\left(\frac{dy}{dx}\right)^2 = \frac{1}{4} \left(e^{2x} - 2 + e^{-2x}\right)$$

$$1 + \left(\frac{dy}{dx}\right)^2 = \frac{1}{4}(e^{2x} + 2 + e^{-2x}) = \left[\frac{1}{2}(e^x + e^{-x})\right]^2.$$

The length of the curve from x = 0 to x = 2 is

$$L = \int_0^2 \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx = \int_0^2 \frac{1}{2} \left(e^x + e^{-x}\right) \, dx \qquad \text{Eq. (3) with } a = 0, b = 2.$$

$$= \frac{1}{2} \left[e^x - e^{-x}\right]_0^2 = \frac{1}{2} \left(e^2 - e^{-2}\right)$$

Consider the region bounded by the graphs of $y = \ln x$, y = 0, and x = e.

- a. Find the area of the region.
- **b.** Find the volume of the solid formed by revolving this region about the x-axis.

(a)
$$A = \int_{1}^{e} \ln x \, dx = \left[x \ln x \right]_{1}^{e} - \int_{1}^{e} dx$$

= $(e \ln e - 1 \ln 1) - \left[x \right]_{1}^{e} = e - (e - 1) = 1$

(b)
$$V = \int_{1}^{e} \pi (\ln x)^{2} dx = \pi \left(\left[x(\ln x)^{2} \right]_{1}^{e} - \int_{1}^{e} 2 \ln x dx \right)$$

$$= \pi \left[\left(e(\ln e)^2 - 1(\ln 1)^2 \right) - \left(\left[2x \ln x \right]_1^e - \int_1^e 2 \, dx \right) \right]$$

$$= \pi \left[e - \left((2e \ln e - 2(1) \ln 1) - \left[2x \right]_1^e \right) \right] = \pi \left[e - \left(2e - (2e - 2) \right) \right] = \pi (e - 2)$$

Thank you for your attention