Structural Mechanics (1)

Analysis of Indeterminate Structures - Force Method

- Indeterminate Structures vs. Determinate Structures
- Analysis of Indeterminate Structures.
- Structures with single Degree of Indeterminacy (Beams \& Frames)
- Structures with single Degree of Indeterminacy (Trusses: Int. \& Ext.)
- Structures with multiple Degrees of Indeterminacy
- Support Settlements
- Three-Moment Equation for Continuous Beams

Derivation of three-Moment Equation

Derivation of three-Moment Equation

Substituting in to the comp. equation at support c:
$\theta_{11}+\theta_{r 1}+\theta_{12}+\theta_{r 2}+\theta_{13}+\theta_{r 3}=0$ we get

$$
\sum \frac{P_{l} L_{l}^{2} k_{l}\left(1-k_{l}^{2}\right)}{6 E I_{l}}+\frac{w_{l} L_{l}^{3}}{24 E I_{l}}+\sum \frac{P_{r} L_{r}^{2} k_{r}\left(1-k_{r}^{2}\right)}{6 E I_{r}}+\frac{w_{r} L_{r}^{3}}{24 E I_{r}}
$$

$$
+\frac{\Delta_{l}-\Delta_{c}}{L_{l}}+\frac{\Delta_{r}-\Delta_{c}}{L_{r}}+\frac{M_{l} L_{l}}{6 E I_{l}}+\frac{M_{c} L_{l}}{3 E I_{l}}+\frac{M_{c} L_{r}}{3 E I_{r}}+\frac{M_{r} L_{r}}{6 E I_{r}}=0
$$

Keeping the unknowns in LS and simplifying we get the three-moment equation

$$
\begin{aligned}
& \frac{M_{l} L_{l}}{I_{l}}+2 M_{c}\left(\frac{L_{l}}{I_{l}}+\frac{L_{r}}{I_{r}}\right)+\frac{M_{r} L_{r}}{I_{r}}=-\sum \frac{P_{l} L_{l}^{2} k_{l}\left(1-k_{l}^{2}\right)}{I_{l}} \\
& -\sum \frac{P_{r} L_{r}^{2} k_{r}\left(1-k_{r}^{2}\right)}{I_{r}}-\frac{w_{l} L_{l}^{3}}{4 I_{l}}-\frac{w_{r} L_{r}^{3}}{4 I_{r}}-6 E\left(\frac{\Delta_{l}-\Delta_{c}}{L_{l}}+\frac{\Delta_{r}-\Delta_{c}}{L_{r}}\right)
\end{aligned}
$$

(a) Continous Beam
(b) Primarv Structure Subiected to External Loading

(c) Primary Structure Subjected to Support Settlements

(d) Primary Structure Loaded with Redundant Bending Moments

جَــامعة الـَمَـنارة

$$
\begin{aligned}
& \text { †zoz/s0/0z-6I } \\
& \theta_{l 1}=\sum \frac{P_{l} L_{l}^{2} k_{l}\left(1-k_{l}^{2}\right)}{6 E I_{l}}+\frac{w_{l} L_{l}^{3}}{24 E I_{l}} \quad \theta_{l 2}=\frac{\Delta_{l}-\Delta_{c}}{L_{l}} \\
& \theta_{r 1}=\sum \frac{P_{r} L_{r}^{2} k_{r}\left(1-k_{r}^{2}\right)}{6 E I_{r}}+\frac{w_{r} L_{r}^{3}}{24 E I_{r}} \quad \theta_{r 2}=\frac{\Delta_{r}-\Delta_{c}}{L_{r}} \\
& \theta_{l 3}=\frac{M_{l} L_{l}}{6 E I_{l}}+\frac{M_{c} L_{l}}{3 E I_{l}} ; \quad \theta_{r 3}=\frac{M_{c_{c}} L_{r}}{3 E I_{r}}+\frac{M_{r} L_{r}}{6 E I_{r}}
\end{aligned}
$$

Derivation of three-Moment Equation

If the continuous beam has a constant section $\left(I_{I}=I_{r}=I\right)$ the three-moment equation simplifies to
$M_{l} L_{l}+2 M_{c}\left(L_{l}+L_{r}\right)+M_{r} L_{r}=-\sum P_{l} L_{l}^{2} k_{l}\left(1-k_{l}^{2}\right)-\sum P_{r} L_{r}^{2} k_{r}\left(1-k_{r}^{2}\right)-\frac{1}{4}\left(w_{l} L_{l}^{3}+w_{r} L_{r}^{3}\right)-6 E I\left(\frac{\Delta_{l}-\Delta_{c}}{L_{l}}+\frac{\Delta_{r}-\Delta_{c}}{L_{r}}\right)$
If in addition the two spans are equal $\left(L_{l}=L_{r}=L\right)$ the three-moment equation becomes

$$
M_{l}+4 M_{c}+M_{r}=-\sum P_{l} L k_{l}\left(1-k_{l}^{2}\right)-\sum P_{r} L k_{r}\left(1-k_{r}^{2}\right)-\frac{L^{2}}{4}\left(w_{l}+w_{r}\right)-\frac{6 E I}{L^{2}}\left(\Delta_{l}-2 \Delta_{c}+\Delta_{r}\right)
$$

The forgoing forms of the three-moment equation are applicable to any three consecutive supports I, c \& r of a continuous beam, provided that there are no discontinuities, such as internal hinges, in the beam between the left support / and the right support r.

Fixed Supports

The above three-moment equations where derived to satisfy comp. equ. at any interior support. For a comp. equ. of zero slope at a fixed end support, the beam can be imaginary modified by adjoining end spans of zero length simply supported as shown

Three-Moment Equation - Examples

Ex-01. Determine the reactions and draw the shear force \& bending moment diagrams for the beam shown in the figure by using the three-moment equation

حَـامعة الـمَـنـارة mesessumener

Solution:

The continuous beam $A B C$ has one degree of indeterminacy. It has two different spans of different rigidity. There is no support settlement. So we use the following three-moment equation.

$$
\frac{M_{l} L_{l}}{I_{l}}+2 M_{c}\left(\frac{L_{l}}{I_{l}}+\frac{L_{r}}{I_{r}}\right)+\frac{M_{r} L_{r}}{I_{r}}=-\sum \frac{P_{l} L_{l}^{2} k_{l}\left(1-k_{l}^{2}\right)}{I_{l}}-\sum \frac{P_{r} L_{r}^{2} k_{r}\left(1-k_{r}^{2}\right)}{I_{r}}-\frac{w_{l} L_{l}^{3}}{4 I_{l}}-\frac{w_{r} L_{r}^{3}}{4 I_{r}}
$$

Considering the support B as the central one with two null moments at $A \& B$, we write

$$
0+2 M_{B}\left(\frac{6}{2 I}+\frac{5}{I}\right)+0=-\frac{\left\{(150)(6)^{2}(2 / 6)\left[1-(2 / 6)^{2}\right]+(100)(6)^{2}(4 / 6)\left[1-(4 / 6)^{2}\right]\right\}}{2 I}-\frac{(50)(5)^{3}}{4 I}
$$

Canceling I in both sides and simplifying we get

$$
16 M_{B}=-3029.17 \quad \Rightarrow \quad M_{B}=-189.32 \mathrm{kN} \square \mathrm{~m}
$$

Three-Moment Equation - Examples

حَــامعة الـمَـنـارة

Three-Moment Equation - Examples

Ex. 02. Determine the reaction for the continuous beam $A B C D$ shown in the figure.

Solution:

The continuous beam $A B C D$ has one degree of indeterminacy. It has two spans of different rigidity. There is no support settlement. So we use the following three-moment equation.

$-5 \mathrm{~m}+5 \mathrm{~m}$	$10 \mathrm{~m} \longrightarrow$
$3 I$	I

$$
\frac{M_{l} L_{l}}{I_{l}}+2 M_{c}\left(\frac{L_{l}}{I_{l}}+\frac{L_{r}}{I_{r}}\right)+\frac{M_{r} L_{r}}{I_{r}}=-\sum \frac{P_{l} L_{l}^{2} k_{l}\left(1-k_{l}^{2}\right)}{I_{l}}-\sum \frac{P_{r} L_{r}^{2} k_{r}\left(1-k_{r}^{2}\right)}{I_{r}}-\frac{w_{l} L_{l}^{3}}{4 I_{l}}-\frac{w_{r} L_{r}^{3}}{4 I_{r}}
$$

$$
M_{C}=-457 \mathrm{kN} \llbracket \mathrm{~m}
$$

Three-Moment Equation - Examples

Ex. 03. Determine the reactions for the continuous beam $A B C D$ shown in the figure, due to the uniformly distributed load and due to support settlement of 10 mm at $A, 50 \mathrm{~mm}$ at $B, 20 \mathrm{~mm}$ at C and 40 mm at D . Using the three-moment
 equation

Solution:

$$
\begin{gathered}
M_{l}+4 M_{c}+M_{r}=-\sum P_{l} L k_{l}\left(1-k_{l}^{2}\right)-\sum P_{r} L k_{r}\left(1-k_{r}^{2}\right)-\frac{L^{2}}{4}\left(w_{l}+w_{r}\right)-\frac{6 E I}{L^{2}}\left(\Delta_{l}-2 \Delta_{c}+\Delta_{r}\right) \\
M_{B}=-115.2 \mathrm{kN}-\mathrm{m} \\
M_{C}=-451.2 \mathrm{kN}-\mathrm{m}
\end{gathered}
$$

$$
A_{x}=0
$$

Ex. 04. Determine the reaction for
 in the figure,

Fixed Support \& Extended Cantilever

$M_{l} L_{l}+2 M_{c}\left(L_{l}+L_{r}\right)+M_{r} L_{r}=-\sum P_{l} L_{l}^{2} k_{l}\left(1-k_{l}^{2}\right)-\sum P_{r} L_{r}^{2} k_{r}\left(1-k_{r}^{2}\right)-\frac{1}{4}\left(w_{l} L_{l}^{3}+w_{r} L_{r}^{3}\right)-6 E I\left(\frac{\Delta_{l}-\Delta_{c}}{L_{l}}+\frac{\Delta_{r}-\Delta_{c}}{L_{r}}\right)$

$$
\begin{aligned}
M_{A} & =-146.25 \mathrm{kN}-\mathrm{m} \\
M_{B} & =-213.75 \mathrm{kN}-\mathrm{m}
\end{aligned}
$$

