. . . . Undeformed Beam

4 Bending of Beams - - )| naed| c8lkaas)
”» o C
4.1 Introduction p é;
L .
. . . . X Deformed Beam

Beams are among the most important elements in structural engineering. 1Z (A . (Fig.a).
A beam is straight bar with the dimensions of its cross-sectional area A4 are much smaller than its length /.
However, in contrast to the members of a truss it is loaded by forces which are perpendicular to its axis.
Then, the originally straight beam deforms (Fig.a). This is referred to as the bending of the beam.
As a consequence, internal forces (= stresses: 0 & 7 ) are generated in the beam, the resultants of which

are the shear force IVand the bending moment M (Mechanics of Materials 1, L6 & L7). Itis the aim of the

bend/'ng t/)eor)/to derive equations that allow the determination of the stresses and the deformations.
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4.2 Basic Equations of Ordinary Bending Theory (Simple Beam Theory)

Equations enabling the determination of the stresses and deformations due to the bending of a

beam, will now be derived . In the following we restrict ourselves to ordinary (uniaxial) bending, i.e.,

we assume that the axis zis an axis of symmetry of the cross section & the loads act in the z-xplane.

V=J TdA N=j gdAd =0 M=j zodA
A A A
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dv dM d*M

— = —q(x —=V(x = —g(x +dV
i q(x) T (x) 72 q(x) . —
T ’ . ‘ T r+dx

In addition to the previous statics equations, =

Hooke’s law and the geometrical (kinematic) e
. . d

relations will be used. i

Assuming that the normal stresses o, & 0, in - dz -

the beam are neglected compared with og,. ; F":‘”*_

= |
Then Hooke's law is given by Hﬁ I'.

0,=0=E& =Ec &1, =71=0Gy,, =Gy

C
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V=f TdA
A

additional assumptions

) ) ) dv dM d2M
N —jA odA =0 M —]A zodA a —q(x) E = V(x) e — _q(x)
0,=0=FE¢& =Ec & T, =T=0Gy,, =Gy
v !
a) The displacement wis independent of z: _U” RARR, I'I \_ujquf |
W =W I g = -y
This implies that the height of the b d V4dv -9
is implies that the elg of the beam does ) — ': ] 7Y
not change due to bending: ¢, = dw/dz = 0. x z+da )
b) Plane cross sections of the beam remain oy
plane during the bending. In addition to the d- [j ‘EJ. {j -
P
displacement v/, a cross section undergoes a d J Y
- xIr - xit]
rotation. The angle of rotation 1) = 1)(x) is F-Tﬂf— ’ )i
a small angle; it is counted as positive if the dz [ L, —__ __—:ﬂ, Y_a--

rotation is counterclockwise. Thus,

C

—

The displacement 1/ of a point P which is located at a distance Z from the X-axis is given by 1. (x, z) = 1)(x) 7 .
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M

dVv dM d*M
— d _ _ —  — _ R _
v fAT A||N jA odA =0 M ]AzadA vl q(x) ryvi V(x) Fpoie —q(x)
u(x,z) =¢x)z w = w(x) 0, =0=E¢&,=Ec & T, =T=GYye =GY
Hooke's Law into Kinematic relations v T
M M4-dM
o= =g = g%, - gy (4 N | -
0x dx \l *} + )7 EJ.F +£
_ ou Ow _ , - & __4" dVv 7 Lﬁ
= \0z i x| W) +w) ) x r+dx b h I
where d()/dx = ()’ and W' represents Lt
the slope of the deformed axis of the beam. L t -
| o
N=] O'dA=0=E1,D'J zdA =0 - dr = 5 .
) A | ou o v
which implies that the y-axis has to be a dz I'HH L, S D T
centroidal axis: C is the centroid of the section. b PI

M =j zodA = El/)’j z*dA = EL,Y'
A A
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Where I, = [, z°dA is the second moment of area about .
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4.3 Normal Stresses in Bending Beams 0t Slhaail § @b LY 4.3

M
M = j zadA = Et/)’j z*dA = ELY' |= EYy' = I Sub.into| 0 = EY'z O min
A A y
- M N
— Bending formula| ¢ = —z I, s | Compare with | g = -
i, P y

J max

It shows that the normal stresses, which are referred to as the flexural or bending stresses (_allaai¥| sL>|), are

IinearIy distributed in z-direction as shown in Fig. If the bending moment M is positive, the stresses are positive

(tensile stresses) for z> 0 and they are negative (compressive stresses) for z<0. For z=0 (i.e., in the x, y-plane) we

have 0 = 0. Since € = 0/F the strain € is also zero in the x, y plane: the fibers in this plane do not undergo any

elongation or contraction. Therefore, this plane is called the newutral surface of the beam. The intersection of a cross

section of the beam with the neutral surface (i.e., the y-axis) is called the newzral axis (e.dd! ;5=Ll) . The bending

stresses (tensile or compressive) attain their maximum Valuesl\e/llt the extremﬁlfibers. With the notation z__ for the

maximum value of z(often also denoted by ¢) and : 0;;, 4, = Zmax = ;-
I y
Where W = —2—, is [L?] (often also denoted by $) and called the section modulus (alasl) Jelas).

Zmax

5/27/2024 https://manara.edu.sy/ 5

M




If the state of stress in a beam is investigated, it often suffices to determine only the normal stresses
since the shear stresses are usually negligibly small (slender beams!). There are several different
types of problems arising in this context.

If, for example, the bending moment M, the section modulus W and the allowable stress o ;;,,,,, are

known, one has to verify that the maximum stress g, satisfies the requirement

o .<ag this is called stress check. sl =¥ §a=s

max — “ allow allow

M
—> —< 0
w

On the other hand, if M and o

M

allow are given, the required section modulus can be calculated from

*”

This is referred to as the design of abeam. 3il=ll casas

VVreq —

Oallow

Finally, if W and o

maximum bending moment M. .. must not exceed the allowable moment M ;,,,, = W,

M <Wo

max — allow

lacHl a5l

allow are given, the allowable load can be calculated from the condition that the
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Ex. 1 As afirst example we consider a rectangular area (width b, height h).

]
The coordinate system with the origin at the centroid Cis given; (Fig. a).
In order to determine I ., we select an infinitesimal area dA = bdz
y q-_—oC h
according to (Fig. b) Then every point of the element has the same distance Y
zfrom the y-axis. Thus, we obtain
+1/ b bh?
I, = ZZdA=j z2(bdz) = = [23]TM? =
y j _h/ ( ) 3 [ ]—h/z 12 . | 4 z
2
Ex. 2 In a second example we calculate the moments of inertia of a circular
area (radius R)
I, =1 =ljr2dA=1er2(2m‘dr)=ER4 =
Y Z 2 2 0 4 Uy
Ex. 3 In athird example we calculate the moments of inertia of a ring area
(inner radius R; and outer radius R ;) o 1-
T T
— — 4 __ 2 1,2
Iy =1, = ZRg _ZRi = wtR,,(R;;, + 3t )
For the thinring: t < Ry, %
Y

I, =1, = mtR;,
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Example 1 The cross section of a cantilever beam (I =3 m) lF
consists of a circularring (R, = 4cm,Ra = 5 cm) The s [
allowable stress is given by ,;,,,, = 150 MPa.Determine

the allowable value of the load F . ‘s
Solution: T 4 4
‘ I zRBa —R)  m(5%—44
W =—2 =4(“ ‘)= ( ) _ 57.96 cm® = 57960 mm®
Zmax Ra 4‘(5)
M, =Wa,, =57960x% 150 = 8694000 N - mm = 8.694 kN - m

Mmax —_ Fl < Mallow —_ 8.694 kN m

Fallowl — MCI,HOW — 8.694‘ kN ‘m

Mallow
Fallow — 3 — 29 kN

https://manara.edu.sy/ 8
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Example 2 The simply supported beam (length [ = 10 m) F {
carries the force F = 200 kN. Find the required side length Y e
C of the thin-walled quadratic cross section such that the 7&7 % Y T {
allowable stress 0 ,;;,, = 200 MPa is not exceeded. The L ) ~ 1/3 j
thickness t = 15 mm of the profile is given (|21> (l) | E
Solution:  From the bending moment diagram: Miqx = #F = (%) F = 4444 kN -m = 444.4 X 10N - mm

i i ~ M 444.4x10°
The value of required section modulusis: ~ W,.,, = == =

= 2.222 X 10®* mm3

Oallo 200
From the shape given in the figure, the section modulus as function of C is: | = 1;2 _ 21y But for the hollow square section
C C
L c*—(c—20)* [c*—(c—2t)*][c* + (c —2t)*] (2t)(2c — 2t)(2c* — 4ct +4t?)  2t(c —t)(c* — 2ct + 2t%)
Yo 12 B 12 - 12 B 3
2t(c® — 3c?t + 4ct? — 2t3) 4t(c® — 3c?t + 4ct? — 2t3)  60(c® — 45c¢% +900c — 6750) .
]y — =>W = = =2.222 X 10
3 3c 3c
3 5 2.222 x 10°
= ¢3 — 45¢% + 900c — 6750 = o5 c= ¢3 —45¢? —110211¢c — 6750 = 0
= ¢; = —310,¢c, = 335,¢c3 = —0.061 = ¢ =335mm
i 5/27/2024 https://manara.edu.sy/ 9




Example 2 The simply supported beam (length [ = 10 m) F i ¢
carries the force F = 200 kN. Find the required side length Y =

C of the thin-walled quadratic cross section such that the 7$7 %

allowable stress 0 ,;;,, = 200 MPa is not exceeded. The L , a UH:!

thickness t = 15 mm of the profile is given

Solution: (2_l> (L) N
From the bending moment diagram: M., = #F = (?) F444.4 x 10°N - mm
6
The value of required section modulus is: W,.., = Mmax _ 242B0° _— 2,222 x 106 mm?3
Oallo 200
N . . , , Iy 2l
From the shape given in the figure, the section modulus as function of C is: W = =
c/2 c
3 _ 9.2 2 _ 943
But the inertia moment for the thin-walled section can be simplified as: I, = 2 3¢ t; dct 2t°)
2
tc3 c— 2t tc®  tcd  4tcd 2tc3 3
I, = 2— + 2tc + ~—— f— = = _2t(c )
Y712 ( 2 ) 6 2 6 3 I, = 3
21,  4tc3  4tc?
> W = cy == = 2.222 x 10 mm?3 Take t = 15 mm o get: 20c? = 2.222 x 10°
= ¢ =+/0.1111 x 106 = 333 mm ~ 335 mm
5/27/2024 https://manara.edu.sy/ 10




Example 3 The simply supported beam (length [ = 9 m) lF , .
carries the force F = 210 kN. Find the required side length

2 3 ||f
C of the thin-walled quadratic cross section such that the 1/3 7777 Y
allowable stress 0 ,;;,, = 200 MPa is not exceeded. The ]
thickness t = 12 mm of the profile is given h
i 5/27/2024 https://manara.edu.sy/ 11




4.2 Second Moments of Area

4.2.1 Definitions: The shown coordinate system is arbitrary

The coordinates of the centroid C of an area may be obtained from:

1 yanze [ e y
First moments of area (Static moments of area)
Sy=jsz , Sz=jydA
4 4 V2
Second moments of area (Inertia moments of area)
Iy=J z*dA ]sz y2dA IJ/Z=Izy=_j yzdA IP:j (y2+Z2)dA=Iy+IZ
A A A A

Radii of gyration (Radii plural of radius)

5/27/2024 https://manara.edu.sy/



Frequently, an area A is composed of several parts A4; the moments of e
inertia of which are known (Fig.). In this case, the moment of inertia As
about the y-axis, for example, is obtained as the sum of the moments of As
inertia [,,. of the individual parts about the same axis: R 90
L, = j z%dA = j z%dA +J z%dA +-= Zlyi I, = zlzi I, = 213’21'

A Aq Ay

Ay

4.2.2 Parallel-Axis Theorem y=y+Jyc Z=ZzZ+Z 'z

I; = Jz‘sz = J(z+z‘c)2dA = Jzsz+Zz'C Jf sz+z'§jdA

IJ—, = jZZdA + 2z-(0) + Z_gA = Iy + Z_gA Y
_ — — b
I; =1, + Z¢A I, =1, + y2A iz =1, —¥VczcA | 57 )
Ex. Determine the moment of inertia with respect to the ¥ axis . Y
-0 h
for the shown rectangle. Y
bh®  [(h\’ bh3
I)—] ZE-I_ E (bh) ZT | l Y2 1;5
| > 5
i 5/27/2024 https://manara.edu.sy/ 13




M

Rectangle
b
b i h it b, 4 -_; b it
= ol |} —_ —_— 0 —(h" +h —
i i 12 12 AU 3
71
S| are
° o o . o o
T ol |a 1% 12 - 5
FERT
Triangle
m Al
T bt bl o 1 b h* b, 4 % % bt
—7415"\ ¢ e —_— " =1 — — =2 — b =bh e
-— 4 A6 :i{‘:{ @+a’) 72'{ a) ;H-,{l T a+a) 5
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Circle
x 1 x i 0 T IH'j EH-I
g g g
Thin Circular Ring
b R
tl‘ll. f f f f
- C x Ho 1 w Ho t I 2w Ryt 3w ot
t
) ¥z
Semi-Circle
R 7 I R . m I
i — B — -
,FJ% g om —64) 8 0 60T 32 E
i t:
Ellips=e
i T .3 T, mab, o o BT g
T h Euh EJ’H: 0 7 (™ 4+ b7) Tub
i 1=
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Ex. 2 Determine the moments of inertia for the |-profile shown in Fig. a. Simplify the results for d, t < b, h.

Solution We consider the area to be composed of three rectangles (Fig. b). ’,b,@,* 5;2,|
1
Lo_dntfbet qe R\ dh® o bet bt h%he T,
Yy T 12 12 \272 ~ 12 "6 2 2 SR | N
, Y h/2
Lo_dh® 2bet o h?ht o dRd RPbe _dR® o [(R\T | £
YT 12 7 3 2 "1t 12 2 . = !
L ht3 N th?’ th3
2712 12 6 | Ca
EO—v=—d -
ol (h—l;t];’?
. i
Ca (h+1)/2
e — !
v 1z

5/27/2024 https://manara.edu.sy/



Ex. 3. A cantilever beam with the depicted cross section (constant wall

F
thickness T, t << @ , is subjected to a concentrated force F atoneend. +

Determine the maximum stress in the cross section at the support.

- 40a -]

+— 20

M
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