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Introductory Problem
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A heavy rigid box is suspended from the 

ceiling by two identical hangers: H1 & H2. 

If the weight of the box W is known, find 

the tension forces in the two hangers and 

the vertical displacement 𝑤 of C. 
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Solution (Idealized approach):

If the rigid box has to stay horizontal (the 

extensions in the two hangers must be equal), 

the two equilibrium conditions, are independent 

of the changing geometry and can be written as: 

If the two hangers behave elastically, their extensions d1 & d2 are:

Where k1, k2  & f1, f2 are respectively stiffness & flexibility coefficients of the hangers. So

If the hangers are not identical (more precisely if their extensions are not equal), this problem 

becomes very tough (coupled, nonlinear). This situation is illustrated by the following:

Then for identical hangers (k1=1/ f1=k2=1/ f2=k ) the vertical displacement of C,
is:

åFz= 0:  N1+N2=W, & åMC = 0: -aN1+aN2=0. Þ   N1=N2=W/2.

d1=le1=ls1/E1=lN1/A1E1=N1(l/E1A1)=N1 f1 =N1/k1, 

d2=le2=ls2/E2=lN2/A2E2=N2(l/E2A2)=N2 f2 =N2/k

 k1=1/ f1=E1A1/l & k2=1/ f2=E2A2/l

w=W/2k.    
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Introductory Problem – More realistic approach
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Identical hangers
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H1H2   E1=E2, A1=A2, sy1=sY2.

For equal extensions: E1A1=E2A2, is enough.  
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Identical hangers

d1=d2.

C'

2
b

Fully charged box of weight W

The box remains horizontal

Wa a

N1 N2

C

The equilibrium conditions do not change 

with geometric changes (deformations)
C'
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Non-identical hangers
d1 ¹d2.
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The ends of the hangers are not 

leveled, so if free, the distance 

between them is: 2𝑎′ > 2𝑎,

but the hangers and the rigid box move to keep it 2𝑎.
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2 independent Eqm. Eqs.:

N1=N2=W/2 Þ  s1=W/2A1 & s2=W/2A2.

Then for Elastic Behavior:

d1=Wl/(2E1A1)=d2=Wl/(2E2A2)=w.

3Eqm. Eqs. with 2unknowns: N1 & N2 , coupled 

with 5kinematic unknowns: w, u, b, d1, d2, 

verifying 2Kin. Eqs. & 2Elastic Beh. Eqs.
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The lower end of the left hanger moves:

From (0,-a) to (asinb, -acosb ) by rotation b about Y 

with center C', and to (w + asinb, u - acosb ) by the 

two translations. So the displacement components on Z 

& X of this end are:

w1=New Z – Old Z= w + asinb 

u1 =New X – Old X= u - acosb +a 

The lower end of the right hanger moves:

From (0,+a) to (- asinb, acosb ) by rotation b about Y 

with center C', and to (w - asinb, u + acosb ) by the 

two translations. So the displacement components on 

Z & X of this end are:

w2=New Z – Old Z=w - asinb  

u2=New X – Old X=u + acosb - a

The new lengths of the hangers are  

l+d1=[(l+w1)
2+(u1)

2]1/2 &  l+d2=[(l+w2)
2+(u2)

2]1/2

Their angles with Z are  The motion of the rigid box is a rotation: b about Y 

with center C' , composed with two axial translations:

w & u on Z and X. Where (X, Y, Z) is a fixed system 

with origin at the middle of the upper edge of the box.  

3Eqm. Eqs. with 2unknowns: N1 & N2 , coupled 

with 5kinematic unknowns: w, u, b, d1, d2, 

verifying 2Kin. Eqs. & 2Elastic Beh. Eqs.

Kinematic Equations (Kin. Eqs.):

Introductory Problem – More realistic approach
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The 3Eqm. Eqs. considering the new geometry are:  

3Eqm. Eqs. with 2unknowns: N1 & N2 , coupled 

with 5kinematic unknowns: w, u, b, d1, d2, 

verifying 2Kin. Eqs. & 2Elastic Beh. Eqs.

Equilibrium Equations (Eqm. Eqs.):

Material Equations (Mat. Eqs):

Kinematic Equations (Kin. Eqs.):

l+d1=[(l+w1)
2+(u1)

2]½ (4)

l+d2=[(l+w2)
2+(u2)

2]½  
(5)

The material behavior equations relate locally 

(at every point of the body) the stresses to the 

strains. For the simple case of axially end-

loaded bar with uniform distribution of the 

normal stress over the bar section, these 

equations can be reduced to functional relation 

between the total extension d1 or d2, in the two 

hangers to the internal forces by the 

intermediary of the geometric characteristics l 

& A, and the material property E,   as:   å FZ = 0:  N1cosq1+N2cosq2=W,                                 (1)     

å FX = 0:  N1sinq1+N2sinq2=0,                                           (2)

å MC' = 0: -aN1cos(b -q1)+aN2cos(b -q2)=bWsinb. (3)

Introductory Problem – More realistic approach

d1=F1(N1,l,E1,A1) (6)

d2=F2(N2,l,E2,A2) (7)
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Introductory Problem - Linearization

The first step in the linearization process is 

to make some simplifying assumptions on 

the kinematic aspect of the problem.

The main type is the assumption of the 

small displacement and deformation 

variables. 
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1. Small rotation: b <<1Þ  cosb »1 & sinb »b

So the displacements of the hangers ends, 

are approximated as:

And the inclination angles of the 

hangers defined by:

with the 2d part of the assumption:

2. Small displacements: u << (a,l) & w << (a,l) 

become:

Finally with the 3d part of the assumption:

3. Small deformation: d1<< l & d2<< l 

The two kinematic equations defining 

the deformation:

l+d1=[(l+w1)
2+(u1)

2]½ (4)

l+d2=[(l+w2)
2+(u2)

2]½  
(5)

Can be modified and expanded as:
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Introductory Problem - Linearization
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l+d1=[l2+2lw +2 alb +2awb +(w)2+(ab)2+(u)2]½ (4')

l+d2=[l2+2lw -2 alb -2awb +(w)2+(ab)2+(u)2]½  
(5')

Then approximated by neglecting 2d 

order terms, as:

l+d1»[l2+2lw +2 alb ]½ (4'')

l+d2»[l2+2lw -2 alb ]½  
(5'')

and re-approximated once again to:

l+d1» l+w + ab  (4''')

l+d2» l+w -ab   (5''')

Resuming and grouping the 

consequences of the assumption of 

small displacements and deformation, on 

the kinematic variables and equations:

displacements of the hangers 

inclination angles of the hangers

The extensions (deformations) as 

linearized function of the displacements:

d1» w + ab  (4'''')

d2» w -ab   (5'''')

The 2d step in the linearization process is 

to modify the equilibrium equations in 

the deformed geometry according to the 

approximated displacements:
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Introductory Problem - Linearization
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The 3Eqm. Eqs. considering the new geometry are:  

å FZ = 0:  N1cosq1+N2cosq2=W,                                 (1)     

å FX = 0:  N1sinq1+N2sinq2=0,                                           (2)

å MC' = 0: -aN1cos(b -q1)+aN2cos(b -q2)=bWsinb. (3)

d1» w + ab  (4'''')

d2» w -ab   (5'''')

With the approximated cosins of the hangers

inclination angles q1, q2, the first equilibrium

equations becomes:

å FZ = 0:  N1(1)+N2(1)=W Þ  N1+N2=W             (1')

With the approximated sins of these angles the

second equilibrium equations gives:

å FX = 0:  N1(u/l)+N2(u/l)=0 

              Þ  (N1+N2)(u/l)=0 Þ  u=0 (2')

With the approximated sins and cosines of

these angles in addition to the angle of rotation

b, the third equilibrium equations becomes:

å MC' = 0: -aN1(1)+aN2(1)=bW(b). 

Þ  -N1+N2=bW(b)/a» 0 Þ  N1=N2 (3')

Final Result: the assumption of the small 

displacement and deformation ,  permits to write the 

equilibrium equations in the undeformed geometry.

w=(d1+d2)/2  

b =(d1-d2)/2a 
Þ
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Introductory Problem - Linearization

The 3d step in the linearization process 

is to consider that the material behavior 

is linear elastic. This means to replace 

the functional relations:
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By the two simplified linear equations:

å FZ = 0:  N1cosq1+N2cosq2=W,                                 (1)     

å FX = 0:  N1sinq1+N2sinq2=0,                                           (2)

å MC' = 0: -aN1cos(b -q1)+aN2cos(b -q2)=bWsinb. (3)

l+d1=[(l+w1)
2+(u1)

2]½ (4)

l+d2=[(l+w2)
2+(u2)

2]½  
(5)

d1=f1(N1,l,E1,A1) (6)

d1=f2(N2,l,E2,A2) (7)

Þ

Þ
d1=F1(N1,l,E1,A1) (6)

d2=F2(N2,l,E2,A2) (7)

d1=N1/k1 where k1=E1A1/l (6')

d2=N2/k2 where k2=E2A2/l (7')

å FZ = 0:  N1+N2=W   (1)

å MC' = 0: N1=N2            (2)

w=(d1+d2)/2    (3)

b =(d1-d2)/2a  (4)

d1=N1/k1 (5)

d2=N2/k2 (6)

2Eqm.

  Eqs.

2Kin.

  Eqs.

& 2Beh.

      Eqs.

2Eqm. Eqs. with 2unknowns: N1 & N2 , uncoupled 
with 4kinematic unknowns: w, b, d1, d2, verifying 
2Kin. Eqs. & 2Elastic Beh. Eqs. Final results:

3Eqm. Eqs. with 2unknowns: N1 & N2 , coupled 
with 5kinematic unknowns: w, u, b, d1, d2, 
verifying 2Kin. Eqs. & 2Elastic Beh. Eqs.

d1=W/2k1

d2=W/2k2 

w=W(k1+k2)/(2k1k2) 

b =W(k2-k1)/(4k1k2)

N1=N2=W/ 2     
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Plastic Analysis of Structures

Modeling the behavior of solids is a complex and wide 

ranging subject: Elasticity, Plasticity, Viscosity… and 

many combinations.

In modern Structural Engineering students should at least 

study Elasticity and Plasticity, because most of the limit 

state design principles are based on these two theories. 

For the purpose of structural design of skeletal structures,  

its enough to work with uniaxial stress states.
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Plastic Behavior in Simple Tension and Compression

Monotonic Loading
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- A: Proportionality Limit

- B: Elastic Limit, or Yield Limit

- CD: Plastic flow

- E: Failure Limit

O

s

e

B

E

O
for alloy steels0.1%

stress-strain diagram in simple tension. Monotonic loading

sos

- B: Offset Yield Limit
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Plastic Behavior in Simple Tension and Compression

Unloading and Reloading. Hardening. 

Loading to a value beyond the initial 

yield, then completely unloading, strain 

decreases along an almost elastic line 

AA0, // to the initially loading curve.

Reloading, the s-e curve follows the 

unloading path A0A.

The material is therefore elastic until the 

previous maximum stress sA is reached.

So, the subsequent yield stress increases 

with further straining. This effect is 

known as hardening .

For brittle materials, such as concrete or rock in compression, there 

is a region beyond the failure or peak point in which the slope of the 

curve is negative. Such a behavior is called strain softening. 

s

e

A

O

Loading, unloading & reloading

A0 A¢

sA

s0

ep ee

OA0: plastic strain, ep

A0A¢: elastic strain, ee
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Plastic Behavior in Simple Tension and Compression

Bauschinger Effect

Performing a simple compression 

test on a metal, an almost identical 

s-e curve as in a simple tension 

test, is obtained.

After a plastic prestraining in 

tension, the s-e curve in 

compression differs from the 

curve obtained on loading in 

compression.

This phenomenon is known as the 

Bauschinger effect and is present 

whenever there is a stress reversal.

e

s

Reversed loading.

Bauschinger Effect

sy

-sy

sy²

sy¢
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Modeling of Uniaxial Behavior in Plasticity
Simplified Uniaxial  Stress-Strain Relations
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Modeling of Uniaxial Behavior in Plasticity: Hardening Models
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Modeling of Uniaxial Behavior in Plasticity: Hardening Rules

As described previously, the phenomenon whereby yield stress 

increases with further plastic straining is known as hardening.

(a) Isotropic hardening rule: The reversed 

compressive yield stress is assumed equal to 

the tensile yield stress. As illustrated in figure 

where B'C = BC, the reversed compressive 

yield stress sB' is equal to the tensile yielding 

stress sB before load reversal. Thus, the 

isotropic hardening rule neglects completely 

the Bauschinger effect, as it assumes that a 

raised yield point in tension carries over 

equally in compression. This hardening rule 

may be expressed mathematically in the form
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Modeling of Uniaxial Behavior in Plasticity: Hardening Rules

(b) Kinematic hardening rule: The 

elastic range is assumed to be 

unchanged during hardening. Thus, the 

kinematic hardening rule considers the 

Bauschinger effect to its full extent. 

Kinematic hardening for a linear 

hardening material is shown in Fig. 

1.6b, where BB' = AA'. The center of 

the elastic region is moved along the 

straight line aa'.
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Uniaxial Stress-Strain Relations. Yield Condition

A similar type of idealized description is used for compression. The

stress s cannot exceed the bounds given by the yield stress in

tension s0
t, and the yield stress in compression s0

c.

s

e

s0
t

s0
c

tension & compression plastic limits

0 0

c ts s s-  

For metals, both yield 

stresses usually have 

the same magnitude

s0
t = s0

c =s0

s

e

s0

s0

tension & compression plastic limits 

for metals

0 0s s s-  condition of plastic admissibility 
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Uniaxial Stress-Strain Relation for Elasto-plastic Material
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Behavior of Elasto-plastic Structures under Varying Load

1. Statically Determinate Tension Truss

A

B C

W

45 ° 30 °

A

W

FAB FAC

E, A E, 2
Al

x

y

vA W

uA

-FABcos450+FACcos300=0

FABsin450+FACsin300=W

FAB=0.897W Þ  sAB=FAB/A=0.897(W/A)

 Þ  eAB=(sAB/E)=0.897(W/EA) Þ  

dAB=lABeAB=lÖ2[0.897(W/EA)]=1.268(Wl/EA)

FAC=0.732WÞ  sAC=FAC/2A=0.366(W/A)

Þ  eAC=(sAC/E)=0.366(W/EA) Þ  

dAC=lACeAC=2l[0.366(W/EA)]=0.732(Wl/EA)

dAB=cos135°(0-uA)+sin135°(0-vA)=1.268(Wl/EA)

dAC=cos30°(0-uA)+sin30°(0-vA)=0.732(Wl/EA)

Eq. Eqs.

uA=0.121(Wl/EA)    &   vA=-1.673(Wl/EA)

Solving to get internal forces & deformations

Subst. into Kin. Eqs. to get displacements s

e

sy

sAB=0.897(W/A)

sAC=0.366(W/A)

s

e

sAB=0.897(W/A)

sAC=0.366(W/A)

21

Collapse load 𝑊𝐶:

𝜎𝐴𝐵 = 𝜎𝑦 = 0.897( Τ𝑊𝐶 𝐴) ⇒ 𝑊𝐶 = 1.12𝐴𝜎𝑦
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2. Statically Indeterminate Tension Truss

-FABcos450+FADcos450=0

FABsin450+FAC+FADsin450=W

[(EA/ l)sin450]v+(EA/l)v=W v=Wl/[EA(1+sin450)]

FAB=0.293W    &   FAC=0.585W

B C D

W

A

45° 45°

W

A

FAB FAD

FAC

v

l
E, A

x

y

Two Eq. Eqs. with three unknowns

To solve we need Kin. Eqs.

Sub. into behavior Eqs. 

Then into Eq. Eqs. 

FAB=E(dAB/lAB)A=(EA/l)vsin2450=(EA/ 2l)v

FAC=E(dAC/lAC)A=(EA/l)v  Þ    FAC=2FAB

Back into Eq. Eqs. to get displacement 

First the highly loaded bar plastifies when

After this value the force in AC remains constant and forces in AB and AD increase  

 FAB=FAD

2FABsin450+FAC=W

dAB=vsin450      dAC=v     dAD=vsin450

Þ

FAC=2FAB=WÖ2/(1+Ö2) Þ

FAC=0.585W=sy AÞ   W1=1.707sy A v1=lsy /E
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B C D

W

A

45° 45°

W

A

FAB FAD

sy A

v

l
E, A

W/sy A

vE/lsy

1 2 3

1.707

2.414

Internal forces are

FAB=FAD=0.707(W-sy A)

FAC=sy A

Displacement  is

Collapse occurs when the bars AB and AD plastify

FAB=0.707(W-sy A)=sy AÞ Wc=2.414sy A

 FAB=FAD

2FABsin450+sy A=W

v=2FABl/EA=1.414(W-sy A)l/EA

vc=2lsy /E

W1=1.707sy A, v1=lsy /E

Wc=2.414sy A, vc=2lsy /E

This diagram shows the 

behavior of the truss under 

the increasing load

2. Statically Indeterminate Tension Truss (Cont.)

23
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Ex1. Consider a simple truss consisting of

three pin-ended bars connected to a common

suspended joint. All bars have the same cross

sectional area A, and the same material

properties (E,s0). The vertical Load W,

applied at the suspended joint, increases in

magnitude. Determine the evolution of W to

the total collapse.

Solution:

Geom. Relations:

l1=15l. cosq1=0.6. sinq1=0.8 
l2=12l.  cosq2=0. sinq2=1.
l3=20l.  cosq3=-0.8. sinq3=0.6  

Eqm. Eqs.

åFx=-0.6F1+0.8F3=0

åFy= 0.8F1+F2+0.6F3=W

Kin. Eqs.:

d1=0.6u+0.8v
d2=v
d3= -0.8u+0.6v

( )IJ IJ J Ie u ud = - Beh. Eqs.: full Elastic

F1=(EA/l1)d1=(EA/15l )d1

F2=(EA/l2)d2=(EA/12l )d2

F3=(EA/l3)d3=(EA/20l )d3

Or Beh. Eqs.: full Elastic

d1=(l1/EA)F1=(15l/EA )F1

d2=(l1/EA)F2=(12l/EA )F2

d3=(l1/EA)F3=(20l/EA )F3

8Unknowns: F1, F2, F3, u, v, d1, d2, d3.

Statically

Indeterminate

24



7/2/2024 Advanced Mechanics of Materials and Structures

1- a- Solution in the full Elastic Phase: Displacement Method. Sub. The Kin. Eqs.

into the Beh. Eqs. to get internal forces in terms of displacements u & v.

Internal forces in terms of Displacements

F1=(EA/15l )d1=(EA/15l )(0.6u+0.8v)
F2=(EA/l2)d2=(EA/12l )(v)
F3=(EA/l3)d3=(EA/20l )(-0.8u+0.6v )

Eqm. Eqs. in terms of Displacements 

-0.6[(EA/15l )(0.6u+0.8v)]+0.8[(EA/20l )(-0.8u+0.6v )]=0

0.8 [(EA/15l )(0.6u+0.8v)]+(EA/12l )(v) +0.6[ (EA/20l )(-0.8u+0.6v )]=W

Eqm. Eqs.

-0.6F1+0.8F3=0

0.8F1+F2+0.6F3=W

Kin. Eqs.:

d1=0.6u+0.8v
d2=v
d3= -0.8u+0.6v

Beh. Eqs.: full Elastic

F1=(EA/l1)d1=(EA/15l )d1

F2=(EA/l2)d2=(EA/12l )d2

F3=(EA/l3)d3=(EA/20l )d3

Simplifying: 

3.36u +0.48v =0

0.48u+8.64v = (60Wl/EA)      

Solve to get: u =-Wl/EA.  & v =7Wl/EA.
Sub. into internal force expressions in terms of u &v, to get: 

F1=W/3, F2=7W/12, F3=W/4.
Then sub. into the Kin. Eqs. to get:
d1=5Wl/EA, d2= 7Wl/EA, d3=3.4 Wl/EA.

8Unknowns: F1, F2, F3, u, v, d1, d2, d3.
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Eqm. Eqs. & Comp. Eq.

-0.6F1+0.8F3=0

0.8F1+F2+0.6F3=W
F1- F2 +F3=0.

Kin. Eqs.:

d1=0.6u+0.8v
d2=v
d3= -0.8u+0.6v

8Unknowns: F1, F2, F3, u, v, d1, d2, d3.

1- b- Solution in the full Elastic Phase: Compatibility Method. Eliminate u &v,

from the Kin. Eqs., to get a Comp. Eq. between the 3 extensions: d1, d2, d3.

Or Beh. Eqs.: full Elastic

d1=(l1/EA)F1=(15l/EA )F1

d2=(l1/EA)F2=(12l/EA )F2

d3=(l1/EA)F3=(20l/EA )F3

Comp. Eq. in terms of: d1, d2, d3:  0.8d1+0.6d3=v =d2 Þ 0.8d1- d2 +0.6d3=0

Comp. Eq. in terms of: Fm: dm=(lm/EA)Fm, m=1, 2, 3.
0.8 (l1/EA)F1-(l2/EA)F2 +0.6 (l3/EA)F3 =0  Þ F1- F2 +F3=0. Adding it to the two 

Eqm. Eqs., we get the same solution: F1=W/3, F2=7W/12, F3=W/4. and…

2- End of the full Elastic Phase or first yielding:

The three bars behave elastically until the maximum stress reaches the yield stress

s0. As the three bars have the same section area A, this is equivalent to:

Max(F1, F2, F3)=As0. Þ F2=As0.

This occurs when the load W reaches the value W1, given as:

F2=7W1/12=As0. Þ W1=(12/7)As0. 

The others unknowns for this load W1 still can be computed from the previous

relations. Especially the vertical displacement v reaches a value v 1, given as:

v1 =7W1l/EA. Þ v1=7[(12/7)As0]l /EA. Þ v1=12s0l /E 
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3- the Elasto-plastic Phase:

7Unknowns: F1, F2=As0, F3, u, v, d1, d2, d3.

Eqm. Eqs.

-0.6F1+0.8F3=0

0.8F1+As0+0.6F3=W
with W >W1.

Kin. Eqs.:

d1=0.6u+0.8v
d2=v
d3= -0.8u+0.6v

During this phase the problem is statically determinate. The two forces F1, & F3,

can be computed from the two Eqm. Eqs. rewritten in the form:

Eqm. Eqs.

-0.6F1+0.8F3=0

0.8F1+0.6F3=W-As0

with W >W1.

Solve to get: F1 =0.8(W-As0).  & F3 = 0.6(W-As0). 
Sub. into the two valid Beh. Eqs. to get extensions: 

d1=(15l/EA )[0.8(W-As0)]=12l(W-As0)/EA.
d3=(20l/EA )[0.6(W-As0)]=12l(W-As0)/EA.

Or Beh. Eqs.: full Elastic

d1=(l1/EA)F1=(15l/EA )F1

d2=(l1/EA)F2=(12l/EA )F2

d3=(l1/EA)F3=(20l/EA )F3

Not valid anymore

Sub. These values of d1 & d3 into the first and the third Kin. Eqs. to get displacements: 

u =-0.2[12l(W-As0)/EA] =-2.4l(W-As0)/EA.
v =1.4[12l(W-As0)/EA]= 16.8l(W-As0)/EA.
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4- End of the Elasto-plastic Phase (total collapse)

The two non yielded bars (1&3) behave elastically until the maximum between

F1, & F3. reaches the yielding limit As0. So

Max(F1, F3)=As0. Þ F1= As0.

This occurs when the load W reaches the value Wc, given as:

F1=0.8(Wc-As0)=As0. Þ Wc-As0= 1.25 As0 Þ Wc=2.25As0 .

The others unknowns for this load Wc still can be computed from the previous

relations. Especially the vertical displacement v reaches a value v c, given as:

vc =16.8l(W-As0)/EA=21s0l /E

The evolution of W during the two phases: full elastic phase  then the elasto-plastic phase 

can be shown by observing the following diagram reflecting the relation between W and v.

The full elastic phase starts at:

W =0 & v =0.

It ends at:

W1=(12/7)As0. & v1=12s0l /E.

Where the elasto-plastic phase starts

to end at total collapse where:

Wc=2.25As0 . & vc =21s0l /E
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Ex.2. Consider a simple truss consisting of

three pin-ended bars connected to a common

suspended joint. The bars have the different

cross sectional area as indicated on the figure,

and the same material properties (E,s0). The

vertical Load W, applied at the suspended joint,

increases in magnitude. Determine the

evolution of W to the total collapse.

B C D

A

45° 45°

l  2A  2A

A

W
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Ex3. Consider a rigid horizontal

beam suspended to the roof by two

different bars as indicated on the

figure, and rotates about the shown

hinge by a small angle q, under the

action of a moment M, applied at the

hinge. If the moment M increases in

magnitude. Determine the evolution

of M to the total collapse.

Solution:

l 2l
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Ex4. Consider a rigid horizontal beam

suspended to the roof by three identical

bars as indicated on the figure. If the load

W increases in magnitude. Determine the

evolution of W to the total collapse.

Solution: 2l l
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Ex.5. Consider a rigid horizontal beam suspended 

to the roof by two identical bars and supported by 

a pin as shown on the figure. The beam rotates 

about the pin by a small angle q, under the action 

of a force W, acting as shown.

1. If the force W increases in magnitude,

from zero, determine the evolution of W to

the total collapse.

2. Draw a dimensionless diagram showing

the variation of W with q.
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Ex.6. Consider a rigid horizontal beam

suspended from the roof by three bars of the

same material and sectional properties (A, ±sy)

but of different length as shown in the figure.

The beam translates and rotates by small

quantities, under the action of a force W, acting

as shown.

1. If the force W increases in magnitude, from

zero, determine the evolution of W to the

total collapse.

2. Draw a dimensionless diagram showing the

variation of W with v, the displacement of its

point of application

1 2 3
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