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Lecture 5-6
Flexural Members

v -I- Laterally Restrained Beams
v'lI- Laterally Unrestrained Beams
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Introduction: Beams, Response to loads doold

6jliall
A beam is a structural member which is subjected to transverse
loads, and accordingly must be designed to withstand
predominantly shear and moment, Generally, it will be bent
about its major axis.. s

Clamp at root ] 6.0 m T

\
\\\\\
\
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\
Buckled NN Unlo_afled
position R \pos1t1on
\\ \r'\
\Q\' 378 kNm
[
M

Action applied
vertically Slender structural elements loaded in a stiff
plane tend to fail by buckling in a more

flexible plane (out-of-plane buckling)
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Introduction: Unrestrained Beams daola
6ol

» this lecture covers the design of unrestrained beams that are
prone to lateral torsional buckling.

« Beams without continuous lateral restraint are prone to
buckling about their major axis, this mode of buckling is
called lateral torsional buckling (LTB).

Lateral torsional buckling can be discounted when:

 The section is bent about its minor axis

* Full lateral restraint is provided

« Closely spaced bracing is provided making the
slenderness of the weakaxis low

« The compressive flange is restrained again torsion

 The section has a high torsional and lateral bending
stiffness
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Introduction: Unrestrained Beams “
I 8)LiaJl
Behaviour o)ti-al

Beam is Perfectly elastic, initially straight, loaded by equal and
opposite end moments about its major axis.

v’ Beam is Unrestricted along its length.
v End Supports
v Twisting and lateral deflection prevented.
v'Free to rotate both in the plane of the web and on plan.
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Introduction: Unrestrained Beams ﬁ%v

Syl
Beam is Perfectly elastic, initially straight, loaded by equal and
opposite end moments about its major axis.

e

Three components of displacement are observed i.e
« Vertical (y)

 Horizontal (x)
« and torsional (¢) displacement
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Introduction: Unrestrained Beams-Elastic Critical Moment "
ool

Elastic critical moment

Consider the following assumptions:
« Perfect beam, without any type of
iImperfections (geometrical or

material);
 Doubly symmetric cross section;
« Material with linear elastic
behavior;
« Small displacements ( cos($)=1 ;
sin(9) = ¢)
The critical value of the moment
about the major axis My , denoted as
ME,, (critical moment of the "standard
case") resulting in lateral torsional
buckling is obtained:

Plant — segment A-C

2 1 Cross-section C
E_ T ud ’
JM”_:— GIIEIE 1‘|‘.?—H .
2 ’G1,
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Introduction: Unrestrained Beams-Elastic Critical Moment rooin
. .. ojliaJdl
Elastic critical moment S bt

It can be observed that the critical moment of a member under bending
depends on several factors, such as:
* loading (shape of the bending moment diagram);

e support conditions;
« length of the member between laterally braced cross sections;

« lateral bending stiffness; torsion stiffness; warping stiffness.

Besides these factors, the point of application of the loading also has a
.directinfluence on the elastic critical moment of a beam

My 1> M,y
Stabilizing effect

M, 2<M,,

Destabilizing effect

P p======7

s
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Introduction: Unrestrained Beams- Behavior of Real Steel Beams

Real Steel Beams

* In reality beams are not free from imperfection, not purely
elastic, not always simply supported, not always loaded
with only a constant flexure and are not of a doubly
symmetric sections, consequently, subject to different
bending moment diagrams.

 The derivation of an exact expression for the critical
moment for each case of real beams is not practical, as
this implies the computation of differential equations of
some complexity.

 Therefore, in practical applications approximate formulae
are used, which are applicable to a wide set of situations.
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Introduction: Unrestrained Beams- Behavior of Real Steel Beams

Real Steel Beams

As an alternative to some of the expressions, the elastic critical moment can
be estimated using expression below proposed by Clark and Hill (1960) and
Galea (1981) . It is applicable to members subject to bending about the
strong axis, with cross sections mono-symmetric about the weak z axis, for
several support conditions and types of loading.

[ - ) 0.5 )
: (k.Y I, (k.LVGI, |
T BT || = “+{'1}I r+(~‘.T?.“-",—f_"1.:I.]' '
M, =C, k) 1. REL e g
(k. L) o |
-(c,z,-Cyz,) |
L Is the distance between points of lateral restraint (L, )
E is the Young's Modulus = 210000 N/mm?
G is the shear modulus = 80770 N/mm?

Is the second moment of area about the weak axis

Is the torsion constant

« 15 the warping constant

Is an effective length factor related to rotations at the end section about the
weak axis z (can be conservatively taken as 1.0)

k, Is an effective length factor related to warping restriction in the same cross
sections (can be conservatively taken as 1.0)

I

o

]
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Introduction: Unrestrained Beams- Behavior of Real Steel Beams i%v
)il
Real Steel Beams
As an alternative to some of the expressions, the elastic critical moment can
be estimated using expression below proposed by Clark and Hill (1960) and
Galea (1981) . It is applicable to members subject to bending about the
strong axis, with cross sections mono-symmetric about the weak z axis, for

several support conditions and types of loading.

-

0.5

ﬂ_; El I(ﬁ:: I[;'+{k:{a} GIT-I—(CL-E._C_,-:J;]E |
\ &, Tt E1. . P

I.

L_[Ez z, =G :.-') J

is the distance between points of lateral restraint (L, )

is the Young's Modulus = 210000 N/mm?

is the shear modulus = 80770 N/mm?

Is the second moment of area about the weak axis

Is the torsion constant

Is the warping constant

k. Is an effective length factor related to rotations at the end section about the
weak axis z (can be conservatively taken as 1.0)

« 15 an effective length factor related to warping restriction in the same cross
sections (can be conservatively taken as 1.0)

o) mr—

]

—
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Introduction: Unrestrained Beams- Behavior of Real Steel Beams

Real Steel Beams

W

0)lioJl

As an alternative to some of the expressions, the elastic critical moment can
be estimated using expression below proposed by Clark and Hill (1960) and
Galea (1981) . It is applicable to members subject to bending about the
strong axis, with cross sections mono-symmetric about the weak z axis, for
several support conditions and types of loading.

"Iy (k1)GI,

0.5

(k. L)

S 4 s

F Z

:,.g‘-“-*[l e= D

Z; =2, - O.SJ.((vz +-’-’2)(Eff};)ﬂiz4

z;= 0 +for beams with doubly symmetric cross
section (such as lor H cross sections with equal

—flanges)

Zg

| 5 | 2 E ] |“t-'
| | | ’wu' ZCl ? — 3 Lkh

- (E’z z, —C, :.-') |

T El, r

A

15 a parameter that reflects degree of asymniétry of the ::ra::s-s¢ section in
relation to the y axis. / \

Is the distance between the point of
load application and the shear
center. The value will be positive or
negative depending on where the
load is applied as shown in the
figure.
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Introduction: Unrestrained Beams- Behavior of Real Steel Beams

C1, C2, andC3 are coefficients depending on the shape of the bending moment e

diagram and on support conditions:

Loading and Diagram of k. | C Cy

support conditions moments w, <0 v, >0

¥=+111.01.00 1.000

0.5 [ 1.05 1.019

¥=+34 110 1.14 1.000

LT | o5 | 1.1 1.017

w=+12 | 1.0 | 1.31 1.000

[T | 0.5 | 137 1.000

I_I_m_rn‘.ll‘_a;i 1.0 | 1.52 1.000

0.5 [ 1.60 1.000

ﬂmii 1.0 | 1.77 1.000

0.5 | 1.86 1.000
r M R -l w=-14 | 1.0 |2.06 1.000 (0.850

5 = D:D:EEDL‘:

051215 1.000 0.650

v

v

LioJl
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Introduction: Unrestrained Beams- Behavior of Real Steel Beams %V

C1, C2, andC3 are coefficients depending on the shape of the bending moment 54
diagram and on support conditions«

)

Loading and Diagram of k. | C Cs
support conditions moments w, <0 w, >0
‘- M M '1 = -1/ 1.0 | 2.06 1.000 0.850
ar = :D]:EED:*___,
0.5 (215 1.000 0.650
W=-12 1 1.0 |2.35 1.000 1.3 1.2y,
jID:D}“‘IU 05(242| 0950 0.77 -y
: 5
Y=-34 | 1.0 |2.60 1.000 0.55-w,
U]% 05(245| 0850 035—u
: ;
rm ¥=- 1.0 | 2.60 =Wy ¥,
05 (245 | o125-07y, | ~0.125-0.7¢,

* In beams subject to end moments. by definition C, z, = 0.

I, =1
"y, = ek . where .er. and fﬁ are the second moments of area of the
N P | ' '
e T
compression and tension flanges respectively, relative to the weak axis of the section (z
axis):

» C, must be divided by 1.05 when 7 |Ely <1.0,but C, 21.0.
k., LYGI,
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Introduction: Unrestrained Beams- Behavior of Real Steel Beams
I

C1, C2, andC3 are coefficients depending on the shape of the bending moment L
diagram and on support conditions:

Loading and Diagram of k. C G s
support conditions moments
P 1.0 1.12 0.45 | 0.525
pEEEEEEE 0.5 | 097 | 036 | 0478
lP W 1.0 1.35 0.59 | 0411
P = 0.5 1.05 0.48 | 0.338
PJ - 1:”' 1.0 1.04 0.42 | 0.562
AT a | T | os | 09s | 031 | 0539

In case of mono-symmetric | or H cross sections, the tables can be used if the
following condition is verified

-09<w=<09
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Introduction: Unrestrained Beams- Behavior of Real Steel Beams

Resistance of Real Steel Beams

W

0)lioJl

Real beams differ from an ideal beams in much the same way as do real
compression members.

Moment

£

M. &

Elastic buckling

M;_ ]

M; {

Inelastic

buckling ~ Elastic bending

and twisting

_ Curve A — equivalent initial
~ crookedness and twist

- Curve B — equivalent
residual stresses

Curve C —real beams

Lateral deflection and twist

Thus any small imperfections such as
initial crookedness, twist,eccentricity of
load, or horizontal load components
cause thebeam to behave as if it had an
equivalent initial crookedness and twist,
as shown by curve A

Imperfections such as residual stresses
or variations in materialproperties cause
the beam to behave as shown by curve
B.

The behavior of real beams having both
types of imperfection isindicated by
curve C.

Curve C shows a transition from the
elastic behaviour of a beam with
curvature and twist to the inelastic post-
buckling behaviour ofa beam with

rocicdiinl ctroceonce
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Introduction: Unrestrained Beams- Behavior of Real Steel Beams

The influence of Slenderness

Considering the analogy between Ncr and Mcr, the lateral-

torsional behavior of beams in bending is similar to a

compressed column. Therefore:

 The resistance of short/stocky members depends on the
value ofthe cross section bending resistance (plastic or
elastic bending moment resistance, depending of its cross
section class).

 The resistance of slender members depends on the value
of the critical moment (Mcr), associated with lateral-
torsional buckling.

 The resistance of members with intermediate slenderness
depends on the interaction between plasticity and
Instability
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Introduction: Unrestrained Beams- Behavior of Real Steel Beams i%v
)Liall
The influence of Slenderness

Non-dimensional plot permits results from different test series to be compared.

Stocky beams (A.7<0.4) unaffected by
lateral torsional buckling

« Slender beams (A.>1.2) resistance
close to elastic critical moment M.

* Intermediate slenderness adversely
affected by inelasticity and geometric
imperfections.

Stocky Slender
0 10 T - EC3uses areduction factor x,,on

A= | Mol plastic resistance moment to cover
» VM, the whole slenderness range..
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Introduction: Unrestrained Beams- Behavior of Real Steel Beams .-
Sal

The influence of Slenderness

Summary of factors to consider influence of Slenderness

Warping: is the distortion of the elements of a steel section out of the plane
perpendicular to the axis of the member under twisting/torsion.

Restraining this effects will have a favorable impact in avoiding lateral torsional

buckling
End Constraints: Restraints have a major influence on the occurrence of instability

and can be utilized to enhance the load carrying capacity of the beam whenever

instability is likely to occur.

The stiffness in the minor axis Vs stiffness in the major axis: Section with
relatively equal stiffness about both axis are almost never likelyto experience LTB.

Bracing: Lateral bracing of beams is the common measure to overcome the

occurrence of LTB
Point of Load application: In relation to the shear center of the section the point

of load application may have a favorable/stabilizing or unfavorable/destabilizing
effect
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Design According to EC3: Unrestrained Beams d%

d)liaJl
Lateral-Torsional Buckling Resistance e
The verification of resistance to lateral-torsional buckling of a prismatic member

consists of the verification of the following condition (clause6.3.2.1(1)):

E_<1.0>
Mh,f{d
Mb.rd IS the design buckling resistance, given by (clause6.3.2.1(3))

where : W, =W for class 1 and 2 cross sections;
W, =W, forclass 3 cross sections;
W, =W .4, for class 4 cross sections;
Xt Is the reduction factor for lateral-torsional buckling.

In EC3-1-1 two methods for the calculation of the reduction coefficient ¥, in
prismatic members are proposed:

A General Method that can be applied to any type of cross section (more conservative)

Alternative Method that can be applied to rolled cross sections or equivalent welded
sections.
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Design According to EC3: Unrestrained Beams oo

6)liall
A General Method-Any section

actis the imperfection factor, which depends
——5, but . <1.0, onthe buckling curve

DL +(¢’¢r‘ —f’tfr) 0.21, 0.34, 0.49 and for curves

a, b, c and

1

Xir =

P = 0-5[] tagr (Ifr - U.Z)+ Air | _ o
Mecris the elastic critical moment.

2=, M, 1

The buckling curves to be adopted depend on the geometry of the cross
section of the member

Section Limits Buckling curve
I or H sections h/b<2 a
rolled hib>2 h
[ or H sections hib<2 c
welded hib>2 d
Other sections --- d
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Design According to EC3: Unrestrained Beams i

6)LioJl

Alternative Method-Rolled or equivalent welded sections

Students are highly advised to read more on this topic. The discussion of this method
presented in “Design of Steel Structures Eurocode 3, 2010, by da Silva L.S. " is
recommended as a starting literature.
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Deflection Resistance G%V
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Deflections of flexural members must be limited to avoid damage to finish*és*,"""

ceilings and partitions, and should be calculated under SLS loads.

EC3 states that limits for vertical deflections should be specified for each
project and agreed with the client. The UK National Annex to EC3 suggests:

NA.2.23 Vertical deflections [BS EN 1993-1-1:2005, 7.2.1(1)B]

The following table gives suggested limits for calculated vertical
deflections of certain members under the characteristic load
combination due to variable loads and should not include permanent
loads. Circumstances may arise where greater or lesser values would
be more appropriate. Other members may also need deflection limits.

On low pitch and flat roofs the possibility of ponding should be
investigated.

Vertical deflection

Cantilevers Length/180

Beams carrying plaster or other brittle finish Span/360

Other beams (except purlins and sheeting rails) Span/200

Purlins and sheeting rails To suit the characteristics of particular cladding
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BEEAM BENDING

Standard rules for maximum deflection:

L = gverall length .
W = point load, M = moment EndSlope | Max Deflection | 1o encing
w = load per unit length moment
2
\! ML ML ”
N EI 2E!
W 2 3
\ Vi 2 [ »
N 2ET 3E]
N 6EI 8E] 3
M M ML Mi? M
( 2EI RE]
+W WL Wi WL
£ L Ll & 16E! 48 ET 4
goeoroccodtoooronong wl’ Swi wl?
24El 384E] 8
2
A.l *W < c>B o= Hac Wac Wab
Cadke—p— 2L | T | T
a<h ¢ =1Hb(L +a) 60 = I+a & | (at position c) (ﬂnder load)

Vi

0)lioJl
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Deflection Resistance Summary

Define Service loads (Actions)

Define Section and beam prosperities

Draw the bending moment diagram

Determine Maximum deflection of beam

Determine Deflection limits

Compare Maximum deflection of beam with Deflection limits

o0k whE
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Design According to EC3: Unrestrained Beams a%v

8)Liol
Conditions for ignoring the lateral-torsional buckling verification

The verification of lateral-torsional buckling for a member in bending may be ignored if at
least one of the following conditions is verified:

— — p 2
Ay A9 0r Mg, M. <Airo

Where; Miro = 0,4 (maximum value)

Improving the lateral torsional buckling resistance

In practical situations, for given geometrical conditions, support conditions and
assumed loading, the lateral-torsional buckling behaviour of a member can be
improved in two ways:

* Dby increasing the lateral bending and/or torsional stiffness, by increasing the
section or changing from IPE profiles to HEA or HEB or to closed hollow
sections (square, rectangular orcircular);

* Dby laterally bracing along the member the compressed part of the section (the
compressed flange in the case of | or H sections). This is more economical,
although sometimes it is not feasible.
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Design According to EC3: Unrestrained Beams ﬂ%

6)LioJl

Bending Moment Resistance Summary:

1.Draw the bending moment diagram to obtain the value of the
maximum bending moment, Mgg.

2.Determine fy and calculate the class of the section. Once you know
the class of the section then you will know which value of the

section modulus you will need to use in the equation for M, .

3.Work out the effective length, L.

4 Work out the value of M_,, the critical moment.

5.Work out the lateral torsional slenderness ratio using either the
general case or alternative expression.

6.Work out @, using either the general case or alternative expression.

7/.Work out y,;using either the general case or alternative expression.

8.Calculate the design buckling resistance M gy.

9.Carry out the buckling resistance M. rq > Mgy.
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Worked Example: Example on cross-section resistance in bendi%
6)Lial
Example4.4.
Consider the beam, supported by web cleats and loaded by two concentrated
loads, P=70.0kN (design loads). Design the beam usinga HEA profile, inS235
steel (E=210GPa and G=81GPa), according to EC3-1-1. Consider free
rotation at the supports with respect to the y-axis and the z-axis. Also assume
free warping at the supports but consider that the web cleats donot allow
rotation around the axis of the beam (x axis). Assume:

a) Unbraced beam,;
b) Beam is braced at points of application of the concentrated loads.

lPTU.GkN’ 1P?0.0 kN

 1sm ] 3.0 m | 1sm |
1 1 1 7
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Worked Example: Example on cross-section resistance in bendir%v

6)liadl
Solution :a 0)tioll
Step1: Draw the internal action diagrams to get M, &
vEd-
700 kN
Via
0.0 kN
e \ /
105.0 &Nm

Step2: Select a trial section and carryout the section
classification.

Considering a HEA 240 profile.
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Worked Example: Example on cross-section resistance in bendin%v

The cross section class of a HEA 240 is obtained as follows i

Web in bending, E:%ZZI.Qi?ZSZTZKl:?E.G
[ .-

Flange in compression, The HEA 240 is class 1,
 240/2-75/2 _21 t:c:nfirming the use of W,
y 12 or t=£16mm
Material Properties:
HEA 240 » f =235 MPa
> W, =744, ?cm?' » |=41.55cm* » f,= 390 MPa
> | —??EScm > 1,=3285X10°cm® p E=210 Gpa
> | —2?89cm4 » G=81 GPa
Step3: Check for Lateral-torsional buckling without intermediate
bracing [a]. M g, <1.0-
Ma’l..ﬂ’u"

step3.1: Compute the buckling resistance

Mypa =X W, f;:/?’m ’
W, =W, forclass 1= 744.6cm?
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Worked Example: Example on cross-section resistance in bendi%v

6)liadl

1

Air = s . but ;. =<1.0,
gi} 2 72 |
Gr + (‘?LT - ;"-.LT)

¢r =0.5 [l Ty ("?'_LT - 0-2)+ Ay ]; <:|_|

g:> ILT - [W'I f:l'/Mm‘ }0.5
[ ; 05
_ k.Y I, (k.LVGI, .
Aﬂr=£uﬁlh!51[k“) E'+ HZEI;1+&¥E£_C?%T}

L_{Cl ‘g -G, :f)

L = 6.00m
k, = k, = 1.0, as the standard case suppo

z, = 115 mm ﬁlﬁ

S 4

4
t
3
1
2
t
1

Sy
.

=0
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Worked Example: Example on cross-section resistance in bendi%v
6yLiall
z;, =0 for beams with doubly symmetric cross section (such as | S

or H cross sections with equal flanges)
C,=104,C,= 042 and C,= 0.562

Loading and Diagram of k. ' Cs C
support conditions moments |
Pl - lP < > 1.0 1.04 0.42 | 0.562
‘f“' Ld | d| “,T 0.5 0.95 0.31 0.539
1 | M, =2315kNm = A,,=087. 2

Since a7y =0.21 (H rolled section, with j/h < 2)

3 | 4,=095 = 7,=075 4

Compute the buckling resistance

My pa = X171 W_}' f_v/;VM] ’

3
M, p; =0.75x744.6x10° x 2351"‘(:” =131.2kNm> M ;; =105.0kNm O.K.
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Worked Example: Example on cross-section resistance in bendi%v
solution :b 6)liall
Stepd: Check for Lateral-torsional buckling with intermediate
restraints [b].

Stepd.1: Compute the buckling resistance

If the beam is laterally braced at the points of application
of the loads, the lateral-torsional buckling behavior is improved.

P=T00kN l.ﬂ =004 T[T
M .
E_<1.0
M b R
| 1.5m L 3.0 m L.5m B _L
7 1 g
Meq /

1050 kN

Here a lesser profile of HEA 240 is selected which is checked
to be of class 1, confirming the use of W, ,

HEA 220
> W, ,=568.5cm* p | = 28.46cm*

> 1,=1955cm*  » |,=193.3 X 103cm®
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Worked Example: Example on cross-section resistance in bendi%v
Deflection Verification: SLS unfactored imposed actions. e

Unfactored variable loads are shown below
lpstKN 1P:30kN

| LS m | 3.0m |, 1.5 m L
Bl A 7 4
. . wal?
Consider max deflection © =

12EI
W =30 kN, a=1.5 m, L=6m, E= 210000 N/mm?2, 1=7763 10* mm*

_ wal?_ 30000x1500x60002

0 = = =8.28 mm
12EI 12x210000x77630000

Vertical deflection limit:

L _6000
360 " 3c0 = 16.7mm  5516.67 mm>8.28 mm 0.K.
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Worked Example: Example on cross-section resistance in bendin%v

8)liall
Stepd: Check for Lateral-torsional buckling with intermediate e

restraints [b].

Stepd.1: Compute the buckling resistance

If the beam is laterally braced at the points of application
of the loads, the lateral-torsional buckling behavior is improved.

N lp T0.0 kN 1::' 004N ] -
M ) S

1.5m L 3.0 1.5 m L
1 1

1050 kN

Here a lesser profile of HEA 240 is selected which is checked
to be of class 1, confirming the use of W,

HEA 220
> W, ,=568.5cm? p | = 28.46cm?

> 1,=1955cm* B |,=193.3 X 103 cm®
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Worked Example: Example on cross-section resistance in bendin%v
1 5ol

AL 0.5 = but Xt EI.D..,
s alg 22 ) :
L1 ( LT LT)

bir =051+ e, (7, -0.2)+ 22 |.

2=, 1, M,

-

. , 0.5 |
mt El. Fk" ) ol +{k: L) G, +lc, z, —C, :;]} |

Lk, I. e £
L_(El ‘g _C.‘!-:.-')

L = 3.00m
k, = k, = 1.0, as the standard case support

= (0, The elastic critical moment of the beam is not
aggravated by the fact that the loads are applied at the upper

flange, because these are applied at sections that are laterally
restrained.

W, =W, forclass 1= 568.5cm?
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Worked Example: Example on cross-section resistance in bendi%v
5ol

z, =0 for beams with doubly symmetric cross section (such as |

or H cross sections with equal flanges)
C;= 1.00,C;, = notimportantas Z=0and C; = 1.0

Loading and Dagram of k. C (s

support conditions moments w, =0 w, >0
M WM =<1 110 |1.00 1.000

":n- é" 0.5 |1.05 1.019

M, =5513 kNm = A, =049,

As @,y =0.21 (rolled H section, with h/b < 2),

¢,y =065 = y,,=093.

10
M, s =0.93x568.5x 107° x 2351}{0 g =124.2kNm> M ., =105.0kNm O .K.
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Worked Example: Example on cross-section resistance in bendl%f

Deflection Verification: SLS unfactored imposed actions. sl
Unfactored variable loads are shown below
P = 35 kN P = 35 kN
Notes:
 Imposed (variable)
Loads must be
determined
- |_ 1.5m | 3.0m [ 1.5 m L * Max deﬂeCtlon
! i i 7 must be calculated.
Consider max deflection =22

12EI
W =35 kN, a=1.5 m, L=6m, E= 210000 N/mm?, 1=54100000 10*4 mm?*

5 — wal®_ 35000x1500x6000°

= =13.86 mm
12EI 12x210000x54100000

Vertical deflection limit:

L _6000
360" 360 = 16.7mm  516.67 mm>13.86 mm O.K.
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Worked Example: Example on cross-section resistance in bendi%v

La
O)Liol
Summary -
Criteria ‘ Unbraced beam Braced beam
|
LTB (General
HEA 240 HEA 220
method) =
h b b it r A h; d
kg/m mm mm mm mm mm mm? mm mm
x 10°
HE 240 AA® 47 4 2 240 6,5 9 21 60,4 206 164
HE 240 A 60,3 230 240 15 12 71 16,8 206 164
G ly Wely [Wply*| iy Az Iz Welz [Wplzt| Iz S5 I hw
kg/m] mm mm? mm? mm mm? mm* mm- mm? mm mm mm? mm®
x 104 x10° | x10° x 10 x108 | x10* | x10° | x10° x 10 x10¢ | x10°
HE 240 AA 474 5835 5210 570,6 9.83 21,54 077 173,1 264 4 5,87 49.10 19 2396
HE 240 A 6038 7763 75,1 7446 10,05 2518 | 2749 230,7 3517 6,00 56,10 4155 3285
Steel Structures2 Prof.Dr. Nael M. Hasan
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Worked Example: Example on cross-section resistance in bendi%v

6ol
Summary
N
Criteria ‘ Unbraced beam ‘ Braced beam RS Y
] [
1 — 1
I.
LTB (General '
HEA 240 HEA 220
method)
h y=g— dh
G h b b f r A h; d hw
kg/m mm mm mm mm mm mm? mm mm LA
¥ —L
x 107 -
HE 220 A 505] 210 220 1 N 18 64,3 188 152 't
G ly Wely [Wply*| iy Ayvz Iz Welz [Wplzt| Iz 35 I hw
kg/m]| mm* mm? mm? mm mm? mm? mm? mm- mm mm mm® mm?®
I x 10* x10° | x10° x 10 x 108 | »10¢ | x10° | x10° x 10 x 104 | x10°
HE 220 A 5[],5' 5410 515,2 568,5 917 20,67 ‘ 1955 1717 206 5,51 5009 2846 1933
https://manara.edu.sy/
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6)liall

Lecture /-8

- Flexural Members

v -I- Laterally Restrained Beams
v'lI- Laterally Unrestrained Beams

- Beam-Column Members
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* Axlal force members are, in practice, subjected to
axial load as well as bending in either or both the

axis of the cross section.

Introduction: Beam-Column Members

« Similarly flexural members may also be subjected to
axial load.

 In either case, a member subjected to both

significant axial and bending stresses is termed as
Beam-Column Members.

« The behavior of such members results from

the combination of both effects and varies with
slenderness.
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Introduction: Beam-Column Members doola
- o)tiall
IR N
i NI
N
M = Pe

A member subjected to both significant axial
and bending stresses is termed as Beam-
L, Column Members.
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Introduction: Beam-Column Members LZV

deola
« At low slenderness, the cross sectional resistancé™=
dominates.

 With increasing slenderness, pronounced second-
order effects appear, significantly influenced by both
geometrical imperfections and residual stresses.

At high slenderness range, buckling is dominated by
elastic behavior, failure tending to occur by flexural
buckling (typical of members in pure compression)
or by lateral-torsional buckling (typical of members
In bending).

« The behavior of a member under bending and axial force
results from the interaction between instability and plasticity

and is influenced by geometrical and material imperfections.
Therefore very complex.
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Introduction: Beam-Column Members LZ

bending and axial force is made in two steps:
 \Verification of the resistance of cross sections .

« Verification of the member buckling resistance (in

general governed by flexural or lateral-torsional
buckling).
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Cross Section Resistance : M-N interaction

Cross section resistance

The cross section resistance is based,;

e onits plastic capacity (class 1 or 2 sections) or
 onits elastic capacity (class 3 or 4 cross sections).

When a cross section is subjected to bending moment
and axial force (N + M, , N+ M, oreven N+ M, + M, ),

the bending moment resistance should be reduced,
using interaction formulas.
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Cross Section Resistance : M-N interaction
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Cross Section Resistance : M-N interaction

 The interaction formulae to evaluate the elastic cross
section capacity are the well known formulae of simple
beam theory, valid for any type of cross section.

« However, the formulae to evaluate the plastic cross
section capacity are specific for each cross section shape.

* For a cross section subjected to N + M, a general
procedure may be established to evaluate the plastic
bending moment resistance M, g4, reduced by the presence
of an axial force N.
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Cross Section Resistance : M-N interaction ‘ZV

dego
5ol
(A4, =4, =\A-N/T, )ﬁ) | 2
. | - . I
“‘*7/ A, WSS = /
\ N
A.=N/f, ___ N___ ) ]
J\ ]/ - N T ™
(A =4, =(A-N/f, ;2) F,
g
M.H',Rd - Al.f!_].'d

« Although the interaction formulae are easy to obtain by
applying the general method, the resulting formulae

differ for each cross sectional shape and are often not
straightforward to manipulate.
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Cross Section Resistance : M-N interaction —
)ladl
« Historically, several approximate formulae have been

developed, and, Villette (2004) proposed an accurate
general formula, applicable to most standard cross
sections. with an axis of symmetry with respect to the

axis of bending, given by:

_||']'

. plan
M g, Nk | . k-l
| Ve 1.0 @y =1.0+1.82 ~1.01 |——.

M pl.Rd N pl.Rd Wi w, — 1

wp =W, /W, is the ratio between the plastic bending modulus and the elastic modulus,
« k=vliis the ratio between the maximum distance v from an extreme fiber to the elastic
neutral axis and the radius of gyration i of the section about the axis of bending.
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Cross Section Resistance : M-N interaction

Yy
 For acircular hollow section, the following exact
expression may be established (Lescouarc'h, 1977): :

. x(l-n) ] A/
My g =My sin=———= where, "= Nea|N pira

* Interaction formulae for axial force and bi-axial bending have usually
the following general format:

o fi
M., M_,
¥ Jd + - ....F.-Ifr — l
M N,v.Rd M N,z,Rd

For | or H cross sections For RHS cross subjected
subjected to N + My + Mz, to N + My + Mz,
a=(1.0-05Vnk, a=f=—>1"—  (ifn<08);
: | 1—-1.137
l+n
h= 1.0 — pp\@pin=05) 7 a=p=6 (if 7>0.8).
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Cross Section Resistance : Design Resistance

EC1993-1-1 Provisions

Clause 6.2.9 provides several interaction formulae between
bending moment and axial force, in the plastic range and in
the elastic range. These are applicable to most cross
sections. But in all case the following shall be satisfied;

*ME:I S M_.w,mr

Class 1 or 2 sections

Mg, Is the design bending moment and M, , represents the design plastic
moment resistance reduced due to the axial force N

For rectangular solid sections under uni-axial bending and axial force, My gis
given by
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Cross Section Resistance : Design Resistance

For rectangular solid sections under uni-axial bending and
axial force, My gqis given by

For low values of axial force, the reduction of the plastic moment resistance
IS not significant, as can be seen.
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Cross Section Resistance : Design Resistance

For doubly symmetric | or H sections.

» It is not necessary to reduce the plastic moment resistance about vy if the two following conditions are satisfied:
Ny 025N 4, and N, <05h, ¢, [, /7.

» It is not necessary to reduce the plastic moment resistance about z if the following condition is verified:

Ngs <hgt, fp /?’M{}
For | or H sections, rolled or welded, with equal flanges and where fastener holes are not to be accounted for,

| —n .
" but M.".',_\'.Rd = iwpx._u__ﬁd :

My v ra =My, za 1054

My i =My py if n<a;
where, a=(4-2bt,)/4, but a<0.5.

2
n—a . |
‘M."'l'._-___ﬁul — jijlf___Hul 1_(]— ”] lf HL}H_I

For circular hollow sections,

My ki =My gy [1 —n" )
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Cross Section Resistance : Design Resistance

For RHS of uniform thickness and for welded box sections with equal flanges and equal webs and where fastener holes are not
to be accounted for,

1-n
My ga =M, pa o but My a0 <M,z where a,=0.5 and a,=0.5 are the ratios between the area of the
1-035a, .
¥ " webs and of the flanges, respectively, and the gross area of the
MA.'.:.RJ - ‘Mm.:.fed but M-“f'-:.ffﬂ’ < M;J#-:-Hﬂ cross section.
I1-05a,

In a cross section under bi-axial bending and axial force, the N + Mx + Mz interaction can be checked by the following condition:

M “ Y, I where
[‘—M} + [—m} <1.0 o and p are parameters that depend on the shape of the cross section
M\.

M .y ka N.z.Rd I or H sections a=2, f=5n,butp=1;
circular hollow sections a=F=2;
rectangular hollow sections o = g = & Jbut ¢ =<6,
1-1.13n"
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Cross Section Resistance : Design Resistance —
)i-all

Class 3 or 4 cross sections

In class 3 or 4 cross sections, the interaction between bending and axial force requires that the following condition be
checked.:. /
. .j.-

Y MO

where
G, eq IS the design value of the local longitudinal stress due to bending moment and axial force, taking into

account the fastener holes where relevant. It is calculated based on the gross cross section for class 3
cross sections, and on a reduced effective cross section for class 4 sections.

Interaction of bending, axial and shear force
The interaction between bending, axial and shear force should be checked as follows :

» When V¢ =% 50 of the design plastic shear resistance Vi gy, no reduction need be made in the bendin
and axial force resistances

» When V> % 50 of the design plastic shear resistance V; zy, then the design resistance to the
combination of bending moment and axial force should be calculated using a reduced yield strength for the shea

area. This reduced strength is given by (1-p)f,, where p=(2 Vgy/ Vpipg-1)?
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Cross Section Resistance : Design Resistance —
)i-all

Class 3 or 4 cross sections

In class 3 or 4 cross sections, the interaction between bending and axial force requires that the following condition be
checked.:. /
. .j.-

Y MO

where
G, eq IS the design value of the local longitudinal stress due to bending moment and axial force, taking into

account the fastener holes where relevant. It is calculated based on the gross cross section for class 3
cross sections, and on a reduced effective cross section for class 4 sections.

Interaction of bending, axial and shear force
The interaction between bending, axial and shear force should be checked as follows :

» When V¢ =% 50 of the design plastic shear resistance Vi gy, no reduction need be made in the bendin
and axial force resistances

» When V> % 50 of the design plastic shear resistance V; zy, then the design resistance to the
combination of bending moment and axial force should be calculated using a reduced yield strength for the shea

area. This reduced strength is given by (1-p)f,, where p=(2 Vgy/ Vpipg-1)?
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Buckling Resistance: Introduction

For a member under bending and compression, besides the first-order moments and displacements (obtained based or
the undeformed configuration), additional second-order moments and displacements exist ("P-5" effects); these should
be taken into account.

N A
st order elastic behaviour » In the past, various interaction formulae have been propo
Ml_ﬂ [0 to represent this situation over the full slenderness range.
o/
--II -,fll{ ) Real belaviow
=5 — --"I/)-_\x\.\\‘“:” » The present approach of EC3-1-1 is based on a linear-addi
M=>0 interaction formula, illustrated by expression:
N M, M.
f(N Y, 'M” )=1.0
Where, u Twy e
N MN) N, M, and M. are the applied forces and

N,, M, and M, are the design resistances, that take in due acco
the associated instability phenomena.
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Buckling Resistance: Design Resistance d%
)i-all

The development of the design rules, and in particular those adopted by EC3-1-1, is quite complex, as they have to
incorporate;

> two instability modes, flexural buckling and lateral-torsional buckling (or a combination of both),
» different cross sectional shapes and several shapes of bending moment diagram, among other aspects.

> several common concepts, such as that of equivalent moment, the definition of buckling length and the concept
of amplification.

Several procedures provided in EC3-1-1 were described for the verification of the global stability of a steel
structure, including the different ways of considering the second order effects (local P-o effects and global P- A effects).

This topic is solely focused on dealing with the second order effect arising from local P-6 effects.
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Buckling Resistance: Design Resistance
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Local P-6 effects are generally taken into account according to the procedures given in clause 6.3 of EC3-1-1

Clause 6.3.3(1) considers two distinct situations

Members not susceptible to torsional
deformation,

such as members of circular hollow
section or other sections restrained
from torsion.

Here, flexural buckling is the relevant
instability mode.

Members that are susceptible to
torsional deformations,

such as members of open section (I or H
sections) that are not restrained from
torsion.

Here, lateral torsional buckling tends to
be the relevant instability mode.
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Buckling Resistance: Design Resistance

Members which are subjected to combined bending and axial compression should satisfy the following condition given in

clause 6.3.3 of EC3-1-1 N, i M.y + AM g, .k M, ., +AM, 1
%y Ny . M, r g M, ke — About major axis y-y,
HAYT fur Y Twmi N
L+ K M, g +AM, +k M, b +AM <1 _ _
%, N £y . M}.‘m r2 M, — About minor axis z-z,
T i Tmi Vi

Where,

Nia, M, g and M,y are the design values of the compression force and the maximum moments about the y-y and z-.
' - - axis along the member, respectively

:ﬁM;,-,r-.m AM; 4 are the moments due to the shift of the centroidal axis on a reduced effective class 4 cross section
v, and are the reduction factors due to flexural buckling
¥ Lz
LT is the reduction factor due to lateral torsional buckling
Kyys Koz Koys Koz are the interaction factors
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Buckling Resistance: Design Resistance

Members which are subjected to combined bending and axial compression should satisfy the following condition given in

clause 6.3.3 of EC3-1-1 N, M, pe + AM g, L M, ., +AM, ., <1
Ly N " , M, ki v M, a ~ = About major axis y-y,
LT
Y Ymi T |
NEd + k M y.Ed + &M y.Ed + k Mz,l;'d + ﬂMz,Ed < l Ab I I
1, N 2 M}-,m z M, . ~— About minor axis z-z,
Lot
1w 1w T mi B
Where,
Values for N, = A, Mgy =1, W, and AM, ¢4
Class 1 2 3 4
A; A A A Aoy
W1 Hfm’. v }Vm', 5 Wr:.'f. v Wcﬁf v
W. z Wp Z Wﬂf.: W elz 4 effz
AM, pa 0 0 0 eny Neg
AM, g4 0 0 0 ex,: Ngg
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Buckling Resistance: Design Resistance-interaction factors

In EC3-1-1 two methods are given for the calculation of the interaction factors k,, , k,, , k;, and k.

Regardless of the method to be applied;

» In members that are not susceptible to torsional deformation, it is assumed that there is no risk of lateral torsional
buckling (¥ = 1.0). And calculating the interaction factors k, , k, , k,, and k,, for a member not susceptible to
torsional deformation.

Method 1, developed by a group of French and Belgian researchers,
According to this method , a member is not susceptible to torsional deformations if

> =1, or :
P Incase |;< |, but the following condition is satisfied. I” <02 .I'_Cl . (l— Ny Jtl_ Nea } ,
N N

or,

Where,

C, is a coefficient that depends on the shape of the bending moment diagram between laterally braced sections

N. - and N represent the elastic critical loads for flexural buckling about z and for torsional buckling, respectively
Mg is the non dimensional slenderness coefficient for lateral torsional buckling, assessed for a situation with
constant bending moment.
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Buckling Resistance: Design Resistance-interaction factors

v
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Method 1, developed by a group of French and Belgian researchers,
Annex A of EC3-1-1 presents Tables, for the calculation of the interaction factors according to Method 1
Interaction Elastic sectional Plastic sectional properties
properties
factors (Class 3 or 4 sections) {Class | or 2 sections)
)78 )78 1 Auxiliary terms:
c,LC . — _ .
k_m- iyl T L Nﬁ.d Cr;r..,- Cm}',?' - N.‘:u’ C‘H_ 1— Nﬁ.ﬂ, - -'a'\",lfrf )
N:'J". N -y N(r._l.' : _ "hllrr.'r'.: W W'ULL <_: 1151- W Wpf; i:] 5
. or,y i, = CH. = J = o
: Ny ' N, W:'-’--"' W e,
R [-x.
‘u-l; .ul 1 W va'. v Nu'
Ky "N, Coo— = 06— |
N ] S EL I_— ‘Mf-_}f CJ: ]‘] H.'J: . A,Fk.d -
N, N, P N7 agy =1- T 20, Cm_ and (' are factors of equivalent
C C M . s 1 /? uniform moment, determined by the table on the slide # 26,
ke y —mLl I N Coy Coir *";r C. ﬁlév T For class 3 or 4, consider w, =w, =1.0.
' — Ed v z -
‘M:'r__v = N -
C ."""; C JLJ; ]'
k: " 1 NE(." . 1_ "IVF.'d C:
N, N,
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Buckling Resistance: Design Resistance-interaction factors

Method 1, developed by a group of French and Belgian researchers,
Annex A of EC3-1-1 presents Tables, for the calculation of the interaction factors according to Method 1

SR [P Weiy
C_l.jl' =1+ (W.l. - 1)[( 2-— Cﬂl:rl 1||:|.n= - ? C.ITI.T L ]npnl - Ii-'“.r.i'_] 2 H_,_'I 5

LY 1'1'_1 Ir.l|'._|'

'ILf'r.ll.J M z.Ed

where by, =0.5a,; A’ :
Kir M,w.;..w Mf:.'.;..l-:..'

f_-lj_ Y I_._ H-"'I )
C,.=1+(w, - '][[2—‘4'”‘—:'“ ]n,.,; —f-‘x_r} 20,6 [ <
W

I1(-f.| Fid
ir !
‘r+,-'l Cow Xir My,

[ 2l w, W,
c, =1+w, -1) 1—14“—]“‘1” —dyr _{]{Sl oy
- W g Vow, W,

} A

where ¢;; =10a

’T'u M p, Ed JI1"’:i'.:, Ed

where d,; =2a,;

0.1+ 4 Co Hir Mgy i Coe My g -
C e 16 2 = W,
.= 1_|-1-.1""--' _IJ [2__{’ ‘le. E’.l l'%mx ] EL.i'}”H Eﬁ . 4
- Lz
7 .
where £ir = 1.7a,; - =

T+ III {:"“. Aor -'w,-.u.;..ff--' I
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Buckling Resistance: Design Resistance-interaction factors
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Method 1, developed by a group of French and Belgian researchers,

Annex A of EC3-1-1 presents Tables, for the calculation of the interaction factors according to Method 1

Diagram of moments

C.IH.‘ il

M

T

C

N
=0.79+0.21¥, +0.36(¥, —0.33) Nﬁ"’

mi A

. jmm
I A $me

_ T EI |5, N,
{':JH.I i = I + o : - L
I L "wahﬁ'f [‘Tl ‘;'\.': Tl

M, ;Ax) 1s the maximum moment M, .,or M. ¢,
according to the first order analyses

)

¥

is the maximum lateral deflection . (due to

M, ps)or &, (due to M. ;;) along the member

=

Cppp =1-0.18 250
le -
C.u.l.‘ ( = 1 + [}'ﬁ3 =
’ N

R
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Buckling Resistance: Design Resistance-interaction factors
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Method 1, developed by a group of French and Belgian researchers,
Annex A of EC3-1-1 presents Tables, for the calculation of the interaction factors according to Method 1

Auxiliary terms (continuation):

Ty =max(, 2.

LIRS

A, = non dimensional slenderness for lateral torsional buckling due to uniform

sending moment, that is, taking W_=1.0 in Table 3.15;

A,;+ = non dimensional slenderness for lateral torsional buckling;

- N N
If /?'ﬂ 5 U‘EJC_'IJ{I - VEJ ][1 - = J : Cu.'_r = Cm_r.ﬂ: t‘::Jrr: = C.w:,tl : Cu.u.f.T = lﬂ"
1 v,z T
—
_ — N N, £ a
If "1"0 =02 N'ICJ g 1-—EL I—r—m : {'TML' = C:m 0 ( mJ n Y T
\/ N-: ¥,z JI‘w:'r.'?" . . l + J_ a.f T
(’1m: = (".lr::.l'.l; Cmi.?' = C..i_r i =1:
{ ] — NL-':." ] — Nm
V ‘h'rc.l'.: Vﬂ'.r

ML F.:.I' "4 :
£, = —— forclass 1, 2 or 3 cross sections:
‘ME:.I' ely
MJ-.E{.I' A:.[i’ 1 .
g, = . for class 4 cross sections;
P‘Ir Ed H eff v
N, . is the elastic critical load for flexural buckling about y;

o
N, _ is the elastic critical load for flexural buckling about z;
N, 7 is the critical load for torsional buckling;

fr is the constant of uniform torsion or St. Venant's torsion:

/ y 18 the second moment of area about y;

C =[kl] where £, is taken from Table 3.10.
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Buckling Resistance: Design Resistance-interaction factors

Method 2, developed by a group of Austrian and German researchers,

v

0)lioJl

According to Method 2, the following members may be considered as not susceptible to torsional deformation:

» members with circular hollow sections (CHS).

» members with rectangular hollow sections (RHS) (there is widlly argued exception to this rule presented in (|
» members with open cross section, provided that they are torsionally and laterally restrained.

Annex B of EC3-1-1 presents Tables, for the calculation of the interaction factors according to Method 2

Interaction| Typeof | Elastic sectional properties | Plastic sectional properties
factors section (Class 3 or 4 sections) (Chss | ar 2 sections)
' N
Lo H rm_ﬁ_[lvu.m_rw—”;] I+!J -0, ﬂ%]
ki sections and Ay el Fan R an
h rectangular ; . - \i
J |"|'I 3 I’l"r g
hull.-.m <C,, I+ﬂ.ﬁ'—h'r. ‘ =C, {|+{_] HM—:
. - sechons 3 1
Interaction factors k; in members not o Xy Nl 7o ) Ay N T )
susceptible to torsional deformations lorH
according to Method 2 sections and k.. 0.6k
k. rectangular
Tl o
sections
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Buckling Resistance: Design Resistance-interaction factors

Method 2, developed by a group of Austrian and German researchers,

v
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Annex B of EC3-1-1 presents Tables, for the calculation of the interaction factors according to Method 2

k.. lorH

sections

rectangular

hollow
Interaction factors k; in members not

susceptible to torsional deformations

sections

_ N,
C,. (1 +0.6 4 £d

N
<C,. [1 +0.6 Ed

Az Nm f?’.m

Z: N[V

|

|

Cn: {I +24 _[}_ﬁ}L]

X NJ’EJ:.’I{?.UI

ECMPHA—JJL—%
X: N /7an

_ N
C, {1 A 02} ]
X Nﬁk,"'r?’_m

c(lug_]
X NpelVan

according to Method 2

In I or H sections and rectangular hollow sections under axial compression and
uniaxial bending (M, g,), k., may be taken as zero.
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Buckling Resistance: Design Resistance-interaction factors

Method 2, developed by a group of Austrian and German researchers,

v
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Annex B of EC3-1-1 presents Tables, for the calculation of the interaction factors according to Method 2

Interaction

Elastic sectional properties
(Class 3 or 4 sections)

Plastic sectional properties
(Class | or 2 sections)

k., of Table 3.16

k,, of Table 3.16

k.. of Table 3.16

k. of Table 3.16

{1_ 0.054_ Ney o
(CmLT - 0-25) X N /7 |
0.05 Ny,

> 1—
[ (Cmr.r _0-25) X. Np /}'Ml i

{ 04, Ny
(Cmf,'r _0-25) 2. Ny /3’ M1
Jil||"'r1":'-:.’

{ 0.1
> -
(Cm[]" _0-25] 7. Ny .I"If?/Ml |
for A.<0.4:k, =06+
0.17, Ng,
(Cmm' - 0-25) X- N /S".m

<1-

factors

K.

k-
Interaction factors k; in  members K.y
susceptible to torsional deformations
according to Method 2

k?.'ﬁ

k.- of Table 3.10

k.. of Table 3.16
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Buckling Resistance: Design Resistance-interaction factors

Method 2, developed by a group of Austrian and German researchers,

Annex B of EC3-1-1 presents Tables, for the calculation of the interaction factors according to Method 2

v

0)lioJl

Dlagmm of Rﬂngc Cm}'s Cm: and CmLT
moments Uniform loading Concentrated load
M
T 1<y <1 0.6+0.4% > 0.4
M, E ’ﬂ v M, 0£a, =1 | 1<wy< 02+08¢, 204 02+08c, =04
W 0<¥<1| 01-08a,>04 —0.8ct, > 0.4
—1<a, <0
o = M AM !
Equivalent factors of uniform moment C,; ' M, 12w <0 | 0.1(1-¥)-08a, 204 | 0.2(-¥)-0.8c, 204
arording fo Method 2 - 0<a, <1 | 1w 0.95+ 0,05, 0.90+0.10¢,
M, M,
Y, 0<¥ <l 0.95+0.05a, 0.90+0.10a,
. -1<a, <0 .
a,=M,/M, w20 | 095+0.05a,(1+2F) |0.90+0.10a, (1+2F)

In the calculation of @, or g, parameters, a hogging moment should be taken as negative

and a sageing moment should be taken as positive.
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Buckling Resistance: Design Resistance-interaction factors

Method 2, developed by a group of Austrian and German researchers,

Annex B of EC3-1-1 presents Tables, for the calculation of the interaction factors according to Method 2
For members with sway buckling mode, the equivalent uniform moment factor should be
taken as C, =090 C =009, respectively.

Factors C,,, C,. and C,;r should be obtained from the diagram of bending moments
between the relevant braced sections, according to the following:

Moment factor bending axis points braced in direction
Coy y-y -z
sz -z V-y
ConLr y-y V-y

=quivalent factors of uniform moment C_;
according to Method 2
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Design According to EC3: [ZV
Section classification for sections under bending and axial for(fér“'

According to EC3, the classification of a cross section is based on its maximum resistance to the type of applied
internal forces, independent from their values.

» This procedure is straightforward to apply for cross sections subjected to either bending or compression.

» However, the presence of both the compression and bending moment on the cross-section member,

generates a stress distribution between that related to pure compression and that associated with the
presence of the sole bending moment.

» Bearing in mind this additional complexity, simplified procedures are often adopted, such as:
. to consider the cross section subjected to compression only, being the most unfavourable situation (too
conservative in some cases)

i. to classify the cross section based on an estimate of the position of the neutral axis based on the applied
internal forces.

» In the later case the neutral axis depth depends on whether the section can plastify, the bending axis, the
section profile.
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Design According to EC3:

Y

Section classification for sections under bending and axial for(fér‘”'

For Bending and Compression about a strong Axis (y-v).

Normal stress distribution on the web depends on the value of the
design axial load by means of parameter a for profiles able to resist in
the plastic range (classes 1 and 2).

1 1 Ngg

a=—[1+-—2

Applying Section Equilibrium and
pplying 2 c twy

Super positioning

in case of elastic normal stress distribution, reference has to be made
to parameter Y (classes 3 and 4).

NEHT
Afy

Applying Section Equilibrium and W= 2
Super positioning

-1

between -1 (bending) and 1 (compression).

through 3)

—
]

C

| o sy — - |

T

[ —— |

N
(1-e)C f

SHEANS

4

b —(IM

With reference to the case of a neutral axis located in the web, a ranges between 0.5 (bending) and 1 (compression) and y ranges

Once the stress distribution is assumed and the values of a and W can be used to classify the section using tables 5.2 (sheet1
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