CBCCCL22: Linear Algebra and Matrix Theory

Lecture Notes 4: Fuclidean Vector Spaces

Ramez Koudsieh, Ph.D.
Faculty of Engineering
Department of Informatics Manara University

D
 جَــامعة
 الـَمَـنارة
 Chapter 3

 Euclidean Vector Spaces

 Euclidean Vector Spaces}

1. Vectors in 2-Space, 3-Space, and n-Space
2. Norm, Dot Product, and Distance in \boldsymbol{R}^{n}
3. Basis, Spanning Sets and Linear Independence
4. Vectors in 2-Space, 3 -Space, and n-Space

Vectors in the plane

- a vector x in the plane is represented by a directed line segment with its initial point at the origin and its terminal point at $\left(x_{1}, x_{2}\right)$.

Initial point

$$
\boldsymbol{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \begin{aligned}
& x_{1}=\text { first component of } \boldsymbol{x} \\
& x_{2}=\text { second component of } \boldsymbol{x}
\end{aligned}
$$

- Vector Addition

جَــامعة
الـَـــنارة

$$
\boldsymbol{u}=\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right], \boldsymbol{v}=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] \Rightarrow \boldsymbol{u}+\boldsymbol{v}=\left[\begin{array}{l}
u_{1}+v_{1} \\
u_{2}+v_{2}
\end{array}\right]
$$

- Scalar Multiplication

$$
\begin{aligned}
& c \boldsymbol{v}=c\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
c v_{1} \\
c v_{2}
\end{array}\right] \\
& -\boldsymbol{v}=(-1) \boldsymbol{v} \Rightarrow \boldsymbol{u}-\boldsymbol{v}=\boldsymbol{u}+(-\boldsymbol{v})
\end{aligned}
$$

Vectors in the n-space

$$
\begin{aligned}
& R^{1}=1 \text {-space }=\text { set of all real number } \\
& R^{2}=2 \text {-space }=\text { set of all ordered pair of real numbers }\left(x_{1}, x_{2}\right) \\
& R^{3}=3 \text {-space }=\text { set of all ordered triple of real numbers }\left(x_{1}, x_{2}, x_{3}\right)
\end{aligned}
$$

$$
\vdots
$$

$R^{n}=n$-space $=$ set of all ordered n-tuple of real numbers $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

- Notes: An n-tuple ($x_{1}, x_{2}, \ldots, x_{n}$) can be viewed as:
(1) a point in R^{n} with the x_{i} 's as its coordinates.
(2) a vector \boldsymbol{x} in R^{n} with the x_{i} 's as its components.
(3) a vector \boldsymbol{x} in Rn will be represented also as $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

$$
\boldsymbol{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

Operations on Vectors in R^{n}
Let $\boldsymbol{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ and $\boldsymbol{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ two vectors in R^{n}, and if c is any scalar

- Equal: $\boldsymbol{u}=\boldsymbol{v}$ if and only if $u_{1}=v_{1}, u_{2}=v_{2}, \ldots, u_{n}=v_{n}$
- Vector addition (the sum of u and v): $\boldsymbol{u}+\boldsymbol{v}=\left(u_{1}+v_{1}, u_{2}+v_{2}, \ldots, u_{n}+v_{n}\right)$
- Scalar multiplication (the scalar multiple of u by c): $c \boldsymbol{u}=\left(c u_{1}, c u_{2}, \ldots, c u_{n}\right)$
- Note: The sum of two vectors and the scalar multiple of a vector in R^{n} are called the standard operations in R^{n}.
- Negative: $-\boldsymbol{u}=\left(-u_{1},-u_{2}, \ldots,-u_{n}\right)$
- Difference: $\boldsymbol{u}-\boldsymbol{v}=\left(u_{1}-v_{1}, u_{2}-v_{2}, \ldots, u_{n}-v_{n}\right)$
- Zero vector: $\mathbf{0}=(0,0, \ldots, 0)$
- Notes:
(1) The zero vector $\mathbf{0}$ in R^{n} is called the additive identity in R^{n}.
(2) The vector $-v$ is called the additive inverse of v.
- Example 1: Vector operations in R^{3}

Let $u=(-1,0,1)$ and $v=(2,-1,5)$ in R^{3}. Perform each vector operation:
(a) $\boldsymbol{u}+\boldsymbol{v}$
(b) $2 u$
(c) $v-2 u$
(a) $u+v=(-1,0,1)+(2,-1,5)=(1,-1,6)$
(b) $2 u=2(-1,0,1)=(-2,0,2)$
(c) $v-2 u=(2,-1,5)-(-2,0,2)=(4,-1,3)$

- Theorem 1: (Properties of vector addition and scalar multiplication) Let $\boldsymbol{u}, \boldsymbol{v}$, and \boldsymbol{w} be vectors in R^{n}, and let c and d be scalars
(1) $u+v$ is a vector in R^{n}
(2) $u+v=v+u$
(3) $(u+v)+w=u+(v+w)$
(4) $u+0=u$
(5) $u+(-u)=0$
(6) $c u$ is a vector in R^{n}
(7) $c(\boldsymbol{u}+\boldsymbol{v})=c \boldsymbol{u}+c \boldsymbol{v}$
(8) $(c+d) \boldsymbol{u}=c \boldsymbol{u}+d \boldsymbol{u}$
(9) $c(d \boldsymbol{u})=(c d) \boldsymbol{u}$
(10) $1(u)=u$

Closure under addition
Commutative property of addition Associative property of addition
Additive identity property
Additive inverse property
Closure under scalar multiplication
Distributive property
Distributive property
Associative property of multiplication
Multiplicative identity property

- Example 2: Vector operations in R^{4}

Let $u=(2,-1,5,0), v=(4,3,1,-1)$ and $w=(-6,2,0,3)$ be vectors in R^{4}. Solve x for each of the following: (a) $x=2 u-(v+3 w)$, (b) $3(x+w)=2 u-v+x$
(a) $x=2 u-(v+3 w)=2 u-v-3 w$

$$
\begin{aligned}
& =(4,-2,10,0)-(4,3,1,-1)-(-18,6,0,9) \\
& =(4-4+18,-2-3-6,10-1-0,0+1-9) \\
& =(18,-11,9,-8)
\end{aligned}
$$

(b) $3(x+w)=2 u-v+x \Leftrightarrow 3 x+3 w=2 u-v+x \Leftrightarrow 3 x-x=2 u-v-3 w$

$$
\Leftrightarrow 2 x=2 u-v-3 w \Leftrightarrow x=u-\frac{1}{2} v-\frac{3}{2} w
$$

$$
x=(2,1,5,0)+\left(-2,-\frac{3}{2},-\frac{1}{2}, \frac{1}{2}\right)+\left(9,-3,0,-\frac{9}{2}\right)
$$

$$
=\left(9,-\frac{11}{2}, \frac{9}{2},-4\right)
$$

- Theorem 2: (Properties of additive identity and additive inverse) Let v be a vector in R^{n}, and c be a scalar. Then the properties below are true:
(1) The additive identity is unique. That is, if $u+v=v$, then $u=0$
(2) The additive inverse of v is unique. That is, if $v+u=0$, then $u=-v$
(3) $0 \boldsymbol{v}=\mathbf{0}$
(4) $c \mathbf{0}=\mathbf{0}$
(5) If $c \boldsymbol{v}=\mathbf{0}$, then $c=0$ or $\boldsymbol{v}=\mathbf{0}$
(6) $-(-v)=v$

Linear combination

- The vector \boldsymbol{x} is called a linear combination of $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}$ if it can be expressed in the form $\boldsymbol{x}=c_{1} \boldsymbol{v}_{1}+c_{2} \boldsymbol{v}_{2}+\ldots+c_{k} \boldsymbol{v}_{k}$ where $c_{1}, c_{2}, \ldots, c_{k}$ are scalars.
- Example 3: linear combination

Given $x=(-1,-2,-2), u=(0,1,4), v=(-1,1,2)$, and $w=(3,1,2)$ in R^{3}. Find a, b, and c such that $\boldsymbol{x}=a \boldsymbol{u}+b \boldsymbol{v}+c \boldsymbol{w}$.

$$
\begin{aligned}
-b+3 c & =-1 \\
a+b+c & =-2 \\
4 a+2 b+2 c & =-2
\end{aligned} \quad \Rightarrow a=1, b=-2, c=-1 \quad \text { Thus } x=u-2 v-w
$$

- Example 4: not a linear combination Given $x=(1,-2,2), u=(1,2,3), v=(0,1,2)$, and $w=(-1,0,1)$ in R^{3}. Prove that x is not a linear combination of u, v and w.

$$
\left[\begin{array}{rrr|r}
1 & 0 & -1 & 1 \\
2 & 1 & 0 & -2 \\
3 & 2 & 1 & 2
\end{array}\right] \xrightarrow{\text { Gauss-J. Elimination }}\left[\begin{array}{rrr|r}
1 & 0 & -1 & 1 \\
0 & 1 & 2 & -4 \\
0 & 0 & 0 & 7
\end{array}\right] \Rightarrow \boldsymbol{x} \neq a \boldsymbol{u}+b \boldsymbol{v}+c \boldsymbol{w}
$$

2. Norm, Dot Product, and Distance in R^{n}

- Norm (Length) of a Vector: The norm of a vector $\boldsymbol{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ in R^{n} is given by: $\|\boldsymbol{v}\|=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}$
- Example 5: Norm of a vector
(a) In R^{5}, the length of $v=(0,-2,1,4,-2)$ is given by:

$$
\|\boldsymbol{v}\|=\sqrt{0^{2}+(-2)^{2}+1^{2}+4^{2}+(-2)^{2}}=\sqrt{25}=5
$$

(b) In R^{3} the length of $\boldsymbol{v}=\left(\frac{2}{\sqrt{17}},-\frac{2}{\sqrt{17}}, \frac{3}{\sqrt{17}}\right)$ is given by:

$$
\|\boldsymbol{v}\|=\sqrt{\left(\frac{2}{\sqrt{17}}\right)^{2}+\left(-\frac{2}{\sqrt{17}}\right)^{2}+\left(\frac{3}{\sqrt{17}}\right)^{2}}=\sqrt{\frac{17}{17}}=1
$$

(v is a unit vector)

- Notes: Properties of length
(1) $\|v\| \geq 0$
(2) $\|\boldsymbol{v}\|=1 \Rightarrow \boldsymbol{v}$ is called a unit vector
(3) $\|\boldsymbol{v}\|=0$ iff $\boldsymbol{v}=0$
- Notes:
(1) the standard unit vector in $R^{2}:\{i, j\}=\{(1,0),(0,1)\}$
(2) the standard unit vector in $R^{3}:\{i, j, k\}=\{(1,0,0),(0,1,0),(0,0,1)\}$
- Notes: Two nonzero vectors are parallel $u=c \boldsymbol{v}$
(1) $c>0 \Rightarrow u$ and v have the same direction.
(2) $c<0 \Rightarrow u$ and v have the opposite direction.
- Theorem 3: (Length of a scalar multiple) Let v be a vector in R^{n} and c be a scalar, then $\|c v\|=\mid c\| \| v \|$
- Theorem 4: (Unit vector in the direction of v)

If v is a nonzero vector in R^{n}, then the vector $u=\frac{v}{\|v\|}$ has length 1 and has the same direction as v.
This vector u is called the unit vector in the direction of v.

- Note: The process of finding the unit vector in the direction of v is called normalizing the vector v.
- Example 6: Finding a unit vector Find the unit vector in the direction of $v=(3,-1,2)$.

$$
\begin{aligned}
& \|\boldsymbol{v}\|=\sqrt{3^{2}+(-1)^{2}+2^{2}}=\sqrt{14} \\
& \Rightarrow \frac{\boldsymbol{v}}{\|\boldsymbol{v}\|}=\frac{(3,-1,2)}{\sqrt{3^{2}+(-1)^{2}+2^{2}}}=\frac{1}{\sqrt{14}}(3,-1,2)=\left(\frac{3}{\sqrt{14}}, \frac{-1}{\sqrt{14}}, \frac{2}{\sqrt{14}}\right)
\end{aligned}
$$

- Distance between two vectors: The distance between two vectors u and v in R^{n} is: $d(\boldsymbol{u}, \boldsymbol{v})=\|\boldsymbol{u}-\boldsymbol{v}\|$
- Notes: (Properties of distance)
(1) $d(u, v) \geq 0$
(2) $d(\boldsymbol{u}, \boldsymbol{v})=0$ if and only if $\boldsymbol{u}=\boldsymbol{v}$
(3) $d(\boldsymbol{u}, \boldsymbol{v})=d(\boldsymbol{v}, \boldsymbol{u})$

- Example 7: Distance between 2 vectors

The distance between $u=(0,2,2)$ and $v=(2,0,1)$ is

$$
d(\boldsymbol{u}, \boldsymbol{v})=\|\boldsymbol{u}-\boldsymbol{v}\|=\|(0-2), 2-0,2-1) \|=\sqrt{(-2)^{2}+2^{2}+1^{2}}=3
$$

- Dot product in R^{n} : The dot product of $\boldsymbol{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ and $\boldsymbol{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is the scalar quantity: $\boldsymbol{u . v}=u_{1} \boldsymbol{v}_{1}+u_{2} \boldsymbol{v}_{2}+\ldots+u_{n} \boldsymbol{v}_{n}$
- Theorem 5: (Properties of the dot product) If $\boldsymbol{u}, \boldsymbol{v}$, and \boldsymbol{w} are vectors in R^{n} and c is a scalar, then:
(1) $u \cdot v=v . u$
(2) $u .(v+w)=u . v+u . w$
(3) $c(\boldsymbol{u} \cdot \boldsymbol{v})=(c \boldsymbol{u}) \cdot \boldsymbol{v}=\boldsymbol{u} \cdot(c \boldsymbol{v})$
(4) $v . v=\|v\|^{2}$
(5) $\boldsymbol{v} \cdot \boldsymbol{v} \geq 0$, and $\boldsymbol{v} \cdot \boldsymbol{v}=0$ if and only if $\boldsymbol{v}=\mathbf{0}$
- Example 8: Finding the dot product of two vectors The dot product of $u=(1,2,0,-3)$ and $v=(3,-2,4,2)$ is

$$
\boldsymbol{u} \cdot \boldsymbol{v}=(1)(3)+(2)(-2)+(0)(4)+(-3)(2)=-7
$$

- Euclidean n-space: R^{n} was defined to be the set of all order n-tuples of real numbers. When R^{n} is combined with the standard operations of vector addition, scalar multiplication, vector length, and the dot product, the resulting vector space is called Euclidean n-space.
- Example 9: Finding dot product

$$
u=(2,-2), v=(5,8), w=(-4,3)
$$

(a) $u . v$
(b) $(u . v) w$
(c) $u .(2 v)$
(d) $\|w\|^{2}$
(e) $u .(v-2 w)$
(a) $u . v=(2)(5)+(-2)(8)=-6$
(b) $(u . v) w=-w=-6(-4,3)=(24,-18)$

$$
\begin{aligned}
& \text { (c) } u .(2 v)=2(u . v)=2(-6)=-12 \\
& \text { (e) }(v-2 w)=(5-(-8), 8-6)=(13,2) \\
& u .(v-2 w)=(2)(13)+(-2)(2)=22
\end{aligned}
$$

$$
\text { (d) }\|w\|^{2}=w \cdot w=(-4)(-4)+(3)(3)=25
$$

- Example 10: Using the properties of the dot product Given $u . u=39, u . v=-3, v . v=79$. Find $(u+2 v) .(3 u+v)$

$$
\begin{aligned}
(u+2 v) .(3 u+v) & =u .(3 u+v)+2 v .(3 u+v) \\
& =u .(3 u)+u . v+(2 v) \cdot(3 u)+(2 v) . v \\
& =3(u . u)+u . v+6(v . u)+2(v . v) \\
& =3(u . u)+7(u . v)+2(v . v) \\
& =3(39)+7(-3)+2(79)=254
\end{aligned}
$$

- Theorem 6: (The Cauchy-Schwarz inequality)

If \boldsymbol{u} and \boldsymbol{v} are vectors in R^{n}, then $|\boldsymbol{u} \cdot \boldsymbol{v}| \leq\|\boldsymbol{u}\|\|\boldsymbol{v}\|$

- Example 11: (An example of the Cauchy-Schwarz inequality)

Verify the Cauchy-Schwarz inequality for $\boldsymbol{u}=(1,-1,3)$ and $\boldsymbol{v}=(2,0,-1)$

$$
u . u=11, u . v=-1, v . v=5
$$

$$
|u . v|=|-1|=1, \quad\|u\|\|v\|=\sqrt{u . u} \sqrt{v . v}=\sqrt{11} \sqrt{5}=\sqrt{55}, \quad|u . v| \leq\|u\|\|v\|
$$

- The angle between two vectors in R^{n} :

$$
\cos \theta=\frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\|\boldsymbol{u}\|\|\boldsymbol{v}\|}, 0 \leq \theta \leq \pi
$$

- Note: The angle between the zero vector and another vector is not defined.
- Example 12: Finding the angle between $u=(-4,0,2,-2), v=(2,0,-1,1)$

$$
\begin{aligned}
& \|\boldsymbol{u}\|=\sqrt{\boldsymbol{u} \cdot \boldsymbol{u}}=\sqrt{(-4)^{2}+0^{2}+2^{2}+(-2)^{2}}=\sqrt{24} \\
& \|\boldsymbol{v}\|=\sqrt{\boldsymbol{v} \cdot \boldsymbol{v}}=\sqrt{(2)^{2}+0^{2}+(-1)^{2}+1^{2}}=\sqrt{6}
\end{aligned}
$$

$$
\begin{aligned}
& u . v=(-4)(2)+(0)(0)+(2)(-1)+(-2)(1)=-12 \\
& \Rightarrow \cos \theta=\frac{u \cdot v}{\|u\|\|v\|}=\frac{-12}{\sqrt{24} \sqrt{6}}=\frac{-12}{\sqrt{144}}=-1 \Rightarrow \theta=\pi
\end{aligned}
$$

- Note: u and v have opposite directions $(u=-2 v)$.
- Orthogonal vectors: Tow vectors \boldsymbol{u} and \boldsymbol{v} in R^{n} are orthogonal if $\boldsymbol{u} \boldsymbol{v}=\mathbf{0}$.
- Note: The vector 0 is said to be orthogonal to every vector.
- Theorem 7: (The Triangle inequality) If \boldsymbol{u} and \boldsymbol{v} are vectors in R^{n}, then $\|\boldsymbol{u}+\boldsymbol{v}\| \leq\|\boldsymbol{u}\|+\|\boldsymbol{v}\|$
- Note: Equality occurs in the triangle inequality if and only if the vectors u and v have the same direction.

Orthogonal projections

- Let u and v be two vectors in R^{n}, such that $v \neq 0$. Then the orthogonal projection of u onto v is given by $\operatorname{proj}_{v} u=\frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\boldsymbol{v} \cdot \boldsymbol{v}} \boldsymbol{v}=a \boldsymbol{v}$
a.

b.

- Note: If v is a unit vector, then $v \cdot v=\|v\|^{2}=1$. The formula for the orthogonal projection of u onto v takes the following simpler form:

$$
\operatorname{proj}_{v} \boldsymbol{u}=(\boldsymbol{u} \cdot \boldsymbol{v}) \boldsymbol{v}
$$

- Example 13: (Finding an orthogonal projection in R^{3})

Find the orthogonal projection of $u=(6,2,4)$ onto $v=(1,2,0)$.

$$
\begin{array}{ll}
u . v=(6)(1)+(2)(2)+(4)(0)=10 & v . v=1^{2}+2^{2}+0^{2}=5 \\
\operatorname{proj}_{v} u=\frac{u \cdot v}{v \cdot v} v=\frac{10}{5}(1,2,0)=(2,4,0) &
\end{array}
$$

- Note: $u-\operatorname{proj}_{v} u=(6,2,4)-(2,4,0)=(4,-2,4)$ is orthogonal to $v=(1,2,0)$
- Theorem 8: (Orthogonal Projection and Distance) If \boldsymbol{u} and \boldsymbol{v} are vectors in R^{n}, such that $v \neq 0$. Then $d\left(\boldsymbol{u}, \operatorname{proj}_{v} \boldsymbol{u}\right)<d(\boldsymbol{u}, c \boldsymbol{v}), \quad c \neq \frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\boldsymbol{v} \cdot \boldsymbol{v}}$

- Theorem 9: (The Pythagorean theorem) If u and v are vectors in R^{n}, then u and v are orthogonal if and only if: $\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2}$
- Dot product and matrix multiplication:

$$
\begin{gathered}
\boldsymbol{u}=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right], \quad \boldsymbol{v}=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right] \begin{array}{c}
\left(\text { A vector } \boldsymbol{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right) \text { in } R\right. \\
n \times 1 \text { column matrix })
\end{array} \\
\boldsymbol{u} . \boldsymbol{v}=\boldsymbol{u}^{T} \boldsymbol{v}=\left[\begin{array}{llll}
u_{1} & u_{2} & \cdots & u_{n}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]=\left[u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}\right]
\end{gathered}
$$

(A vector $\boldsymbol{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ in R^{n} is represented as an
3. Basis, Spanning Sets and Linear Independence

- Definition: Let $S=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}\right\}$ is a non empty set of vectors in R^{n} and let the vector equation $c_{1} \boldsymbol{v}_{1}+c_{2} \boldsymbol{v}_{2}+\ldots+c_{k} \boldsymbol{v}_{k}=\mathbf{0}$.
(1) If the equation has only the trivial solution $\left(c_{1}=c_{2}=\ldots c_{k}=0\right)$, then S is called linearly independent (LI).
(2) If the equation has a non trivial solution (i.e. not all zeros), then S is called linearly dependent (LD).
- Notes:
(1) $\mathbf{0} \in S \Rightarrow S$ is linearly dependent. (2) $\boldsymbol{v} \neq \mathbf{0} \Rightarrow\{v\}$ is linearly independent.
(3) $S_{1} \subseteq S_{2} \quad$ if S_{1} is linearly dependent $\Rightarrow S_{2}$ is linearly dependent. if S_{2} is linearly independent $\Rightarrow S_{1}$ is linearly independent.
- Example 14: (Testing for linearly independent) Determine whether the following set of vectors in R^{3} is LI or LD

$$
\begin{aligned}
& S=\left\{\boldsymbol{v}_{1}=(1,2,3), \boldsymbol{v}_{2}=(0,1,2), \boldsymbol{v}_{3}=(-2,0,1)\right\} \\
& c_{1} \boldsymbol{v}_{1}+c_{2} \boldsymbol{v}_{2}+c_{3} \boldsymbol{v}_{3}=\mathbf{0} \Rightarrow \begin{aligned}
c_{1} & -2 c_{3}
\end{aligned}=0 \begin{array}{l}
2 c_{1}+c_{2} \\
3 c_{1}+2 c_{2}+c_{3}
\end{array}=0 \\
& \Rightarrow\left[\begin{array}{rrr|r}
1 & 0 & -2 & 0 \\
2 & 1 & 0 & 0 \\
3 & 2 & 1 & 0
\end{array}\right] \xrightarrow{\text { Gauss-J. Elimination }}\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \Rightarrow \begin{array}{l}
\Rightarrow c_{1}=c_{2}=c_{3}=0 \\
\Rightarrow S \text { is LI }
\end{array}
\end{aligned}
$$

- Independence of two vectors: Two vectors \boldsymbol{u} and \boldsymbol{v} in R^{n} are linearly dependent if and only if one is a scalar multiple of the other.
(1) $S=\left\{\boldsymbol{v}_{1}, v_{2}\right\}=\{(1,2,0),(-2,2,1)\}$ is LI because \boldsymbol{v}_{1} and \boldsymbol{v}_{2} are not scalar multiples of each other.
(2) $S=\left\{\boldsymbol{v}_{1}, v_{2}\right\}=\{(4,-4,-2),(-2,2,1)\}$ is LD because $\boldsymbol{v}_{1}=-2 \boldsymbol{v}_{2}$
- Theorem 10: (dependence in R^{n})

Let $S=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}\right\}$ be a set of different vectors in R^{n}. If $n<k$, then the set S is linearly dependent.

- Note: Let $S=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}\right\}$ be a set of k vectors that are LI in R^{n}, then $k \leq n$.
- Theorem 11: (Independence in R^{n})

Let $S=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ be n vectors in R^{n}. Let A be the $n \mathrm{x} n$ matrix whose columns are given by $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$. Then vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ are linearly independent \Leftrightarrow matrix A is invertible.

Spanning sets

- Definition: Let $S=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}\right\}$ be a set of k vectors in R^{n}. The set S is a spanning set of R^{n} if every vector in R^{n} can be written as a linear combination of vectors in S. In such cases it is said that S spans or generates the n-space R^{n}.
- Example 15: (A spanning set for R^{3}) The set $S=\{(1,0,0),(0,1,0),(0,0,1)\}$ spans R^{3} because any vector $\boldsymbol{u}=\left(u_{1}, u_{2}, u_{3}\right)$ in R^{3} can be written as:

$$
\boldsymbol{u}=u_{1}(1,0,0)+u_{2}(0,1,0)+u_{3}(0,0,1)=\left(u_{1}, u_{2}, u_{3}\right)
$$

- Note: Let $S=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}\right\}$ be a set of k vectors in R^{n} that spans R^{n}, then $k \geq n$.
- Example 16: (A spanning set for R^{3}) Show that the set $S_{1}=\left\{\boldsymbol{v}_{1}=(1,2,3), \boldsymbol{v}_{2}=(0,1,2), \boldsymbol{v}_{3}=(-2,0,1)\right\}$ spans R^{3} We must determine whether an arbitrary vector $\boldsymbol{u}=\left(u_{1}, u_{2}, u_{3}\right)$ in R^{3} can be as a linear combination of $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}$ and \boldsymbol{v}_{3}.

$$
\begin{aligned}
& \boldsymbol{u} \in R^{3} \Rightarrow \boldsymbol{u}=c_{1} \boldsymbol{v}_{1}+c_{2} \boldsymbol{v}_{2}+c_{3} \boldsymbol{v}_{3} \Rightarrow \begin{array}{cr}
c_{1} & -2 c_{3}=u_{1} \\
2 c_{1}+c_{2} & =u_{2} \\
3 c_{1}+2 c_{2}+c_{3} & =u_{3}
\end{array} \\
& |A|=\left|\begin{array}{rrr}
1 & 0 & -2 \\
2 & 1 & 0 \\
3 & 2 & 1
\end{array}\right| \neq 0 \\
& \Rightarrow A \boldsymbol{x}=\boldsymbol{b} \text { has exactly one solution for every } \boldsymbol{u} \\
& \Rightarrow \operatorname{spans}\left(S_{1}\right)=R^{3}
\end{aligned}
$$

- Example 17: (A Set Does Not Span R^{3})

From Example 4: the set $S_{2}=\{(1,2,3),(0,1,2),(-1,0,1)\}$ does not span R^{3} because $\boldsymbol{w}=(1,-2,2)$ is in R^{3} and cannot be expressed as a linear combination of the vectors in S_{2}.

The vectors in S_{2} lie in a common plane

$$
S_{1}=\{(1,2,3),(0,1,2),(-2,0,1)\}
$$

$$
S_{2}=\{(1,2,3),(0,1,2),(-1,0,1)\}
$$

Basis

- Definition: Let $S=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ be a set of n vectors in R^{n}. The set S form a basis for $R^{n} \Leftrightarrow$
(i) $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ span R^{n} and
(ii) $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ are linearly independent.
- The standard basis for $R^{3}:\{i, j, k\}=\{(1,0,0),(0,1,0),(0,0,1)\}$.
- A nonstandard Basis for $R^{3}: S_{1}=\{(1,2,3),(0,1,2),(-2,0,1)\}$.
- Notes:
(1) Any n linearly independent vectors in R^{n} form a basis for R^{n}.
(2) Any n vectors which span R^{n} form a basis for R^{n}.
(3) Every basis of R^{n} contains exactly n vectors.
- Theorem 12: (Uniqueness of basis'representation) If $S=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ is a basis for R^{n}, then every vector in R^{n} can be written in one and only one way as a linear combination of vectors in S.
- Example 18: (Basis for R^{3})

Show that the set $S=\left\{\boldsymbol{v}_{1}=(1,2,1), \boldsymbol{v}_{2}=(2,9,0), \boldsymbol{v}_{3}=(3,3,4)\right\}$ form a basis for R^{3}.
$|A|=\left|\begin{array}{lll}1 & 2 & 3 \\ 2 & 9 & 3 \\ 1 & 0 & 4\end{array}\right|=-1 \neq 0$
$A \boldsymbol{x}=\boldsymbol{b}$ has exactly one solution for every $\boldsymbol{u} \Rightarrow \operatorname{spans}(S)=R^{3}$.
$A \boldsymbol{x}=\mathbf{0}$ has exactly one (trivial) solution $\Rightarrow S$ is linearly independent.
$\Rightarrow S$ form a basis for R^{3}.

