Structural Mechanics (2)

Week No-03

Slope-Deflection for Beams and Frames

Slope-Deflection Method for Beams and Frames

- Basic Concept of the Slope-Deflection Method and Slope-Deflection Equations.
- Analysis of Continuous Beams.
- Analysis of Frames without Sidesway.
- Analysis of Frames with Sidesway.

Member with One End Hinged

Slope Deflection Equations:
$M_{A B}=\frac{2 E I}{L}\left(2 \theta_{A}+\theta_{B}-3 \psi\right)+\mathrm{FE}_{A B}$
$M_{B A}=0=\frac{2 E I}{L}\left(\theta_{A}+2 \theta_{B}-3 \psi\right)+\mathrm{FE} M_{B A}$
$\theta_{B}=\frac{-\theta_{A}}{2}+\frac{3}{2} \psi-\frac{L}{4 E I}\left(\mathrm{FE} M_{B A}\right)$
Modified Slope Deflection Equations:
$M_{A B}=\frac{3 E I}{L}\left(\theta_{A}-\psi\right)+\left(\mathrm{FE} M_{A B}-\frac{\mathrm{FE} M_{B A}}{2}\right)$
$M_{B A}=\mathbf{0}$

Modified Slope Deflection Equations:
$M_{r h}=\frac{3 E I}{L}\left(\theta_{r}-\psi\right)+\left(\mathrm{FE} M_{r h}-\frac{\mathrm{FE} M_{h r}}{2}\right)$
$M_{h r}=\mathbf{0}$
r : rigidly connected end h : hinged end

Ex.1: Determine the member end moments and reactions

$$
\begin{aligned}
& \theta_{A}=\theta_{D}=0 \\
& \& \Delta=0 \\
& \theta_{B} \neq 0 \quad, \theta_{C} \neq 0
\end{aligned}
$$

Since the end supports A and D of the beam are simple supports at which no external moment is applied, the moments at the end A of member $A B$ and at the end D of member BD must be zero. (This can easily be verified by considering moment equilibrium of the free bodies of joints A and D shown in figure. Thus the end A of member

الـمــنارة $A B$ and the end D of member $B D$ can be considered to be hinged ends, and the modified slope-deflection equations can be used for these members.

$$
\begin{aligned}
& M_{r h}=\frac{3 E I}{L}\left(\theta_{r}-\psi\right)+\left(\mathrm{FE} M_{r h}-\frac{\mathrm{FE} M_{h r}}{2}\right) \\
& M_{h r}=0
\end{aligned}
$$

Ex.1: Determine the member end moments and reactions

16/07/2024

Ex.2: Determine the member end moments and reactions for the continuous beam shown in figure due to the uniformly distributed load and due to the support settlements of 15 mm at $B, 36 \mathrm{~mm}$ at C, and 18 mm at D .

$$
E=200 \mathrm{GPa} \quad I=1705 \times 10^{6} \mathrm{~mm}^{4}
$$

Degrees of freedom:

$$
{ }^{M_{B A}}\left(\frac{B}{0}\right)_{M_{B C}} \quad{ }^{M_{C B}}\left(\frac{C}{0}\right)_{M_{C D}}
$$

$$
\theta_{B} \& \theta_{C}
$$

Chord rotations:

$$
\begin{aligned}
& \psi_{A B}=-\frac{0.01 b}{5}=-0.003 \\
& \psi_{B C}=-\frac{(0.036-0.015)}{5}=-0.0042 \\
& \psi_{C D}=\frac{(0.036-0.018)}{5}=0.0036
\end{aligned}
$$

Ex.2: Determine the member end moments and reactions for the continuous beam shown in figure due to the uniformly distributed load and due to the support settlements of 15 mm at $B, 36 \mathrm{~mm}$ at C, and 18 mm at D .

Ex.3: For the next frame under the given loads, by the slope-deflection method, calculate the

Ex.4: For the next frame under the given loads, by the slopedeflection method, calculate the reactions.

