CBCCCL22: Linear Algebra and Matrix Theory

Lecture Notes 5: General Vector Spaces

Ramez Koudsieh, Ph.D.
Faculty of Engineering
Department of Informatics Manara University

1. Real Vector Spaces
2. Subspaces of Vector Spaces
3. Spanning Sets and Linear Independence
4. Basis and Dimension
5. Rank and Nullity of a Matrix
6. Coordinates and Change of Basis

1. Real Vector Spaces

- Definition: Let V be a set on which two operations (vector addition and scalar multiplication) are defined. If the following axioms are satisfied for every u, v, and \boldsymbol{w} in V and every scalar c and d, then V is called a vector space.

Addition:

(1) $u+v$ is in V
(2) $u+v=v+u$

Closure under addition
Commutative property
(3) $u+(v+w)=(u+v)+w$

Associative property
(4) V has a zero vector $\mathbf{0}$: for every \boldsymbol{u} in $V, \boldsymbol{u}+\mathbf{0}=\boldsymbol{u}$ Additive identity
(5) For every u in V, there is a vector in V denoted by $-u: u+(-u)=\mathbf{0}$

Scalar identity

Scalar multiplication:
(6) $c u$ is a vector in V
(7) $c(\boldsymbol{u}+\boldsymbol{v})=c \boldsymbol{u}+c \boldsymbol{v}$
(8) $(c+d) \boldsymbol{u}=c \boldsymbol{u}+d \boldsymbol{u}$
(9) $c(d \boldsymbol{u})=(c d) \boldsymbol{u}$
(10) $1(u)=u$

Closure under scalar multiplication
Distributive property
Distributive property
Associative property
Scalar identity

- Notes:
(1) A vector space ($V,+$, .) consists of four entities:
a nonempty set V of vectors, a set of scalars, and two operations (+, .)
(2) $V=\{0\} \quad$ zero vector space
- Examples of vector spaces:
(1) Euclidean vector space: $V=R^{n}$

$$
\begin{aligned}
& \left(u_{1}, u_{2}, \cdots, u_{n}\right)+\left(v_{1}, v_{2}, \cdots, v_{n}\right)=\left(u_{1}+v_{1}, u_{2}+v_{2}, \cdots, u_{n}+v_{n}\right) \text { vector addition } \\
& k\left(u_{1}, u_{2}, \cdots, u_{n}\right)=\left(k u_{1}, k u_{2}, \cdots, k u_{n}\right) \text { scalar multiplication }
\end{aligned}
$$

(2) Matrix space: $V=M_{m \times n}$ (the set of all $m \times n$ matrices with real values) Example: $(m=n=2)$

$$
\left[\begin{array}{ll}
u_{11} & u_{12} \\
u_{21} & u_{22}
\end{array}\right]+\left[\begin{array}{ll}
v_{11} & v_{12} \\
v_{21} & v_{22}
\end{array}\right]=\left[\begin{array}{ll}
u_{11}+v_{11} & u_{12}+v_{12} \\
u_{21}+v_{21} & u_{22}+v_{22}
\end{array}\right] \text { vector addition }
$$

$$
k\left[\begin{array}{ll}
u_{11} & u_{12} \\
u_{21} & u_{22}
\end{array}\right]=\left[\begin{array}{ll}
k u_{11} & k u_{12} \\
k u_{21} & k u_{22}
\end{array}\right] \text { scalar multiplication }
$$

(3) n-th degree polynomial space: $V=P_{n}(x)$ (the set of all real polynomials of degree n or less)

$$
\begin{aligned}
& p(x)+q(x)=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\cdots+\left(a_{n}+b_{n}\right) x^{n} \\
& k p(x)=k a_{0}+k a_{1} x+\cdots+k a_{n} x^{n}
\end{aligned}
$$

(4) Function space: $V=c(-\infty, \infty)$ (the set of all real functions)

$$
\begin{aligned}
& (f+g)(x)=f(x)+g(x) \\
& (k f)(x)=k f(x)
\end{aligned}
$$

- Theorem 1: (Properties of scalar multiplication)

Let v any element of a vector space V, and let c be any scalars. Then the following properties are true:
(1) $0 \boldsymbol{v}=\mathbf{0}$
(2) $c \mathbf{0}=\mathbf{0}$
(3) If $c \boldsymbol{v}=\mathbf{0}$, then $c=0$ or $\boldsymbol{v}=\mathbf{0}$
(4) $(-1) \boldsymbol{v}=-\boldsymbol{v}$

- Note: To show that a set is not a vector space, you need only find one axiom that is not satisfied.
- Example 1: $V=R^{2}=$ the set of all ordered pairs of real numbers vector addition: $\left(u_{1}, u_{2}\right)+\left(v_{1}, v_{2}\right)=\left(u_{1}+v_{1}, u_{2}+v_{2}\right)$ scalar multiplication: $c\left(u_{1}, u_{2}\right)=\left(c u_{1}, 0\right) \quad$ Verify that V is not a vector space $1(1,1)=(1,0) \neq(1,1) \Rightarrow V$ with the given operations is not a vector space.
- Example 2: Set of all real polynomials of degree n Is Not a vector space. Why?

2. Subspaces of Vector Spaces

- Definition: A non-empty subset W of a vector space V is called a subspace of V if it is also a vector space with respect to the same vector addition and scalar multiplication as V.
- Trivial subspace: Every vector space V has at least two subspaces:
(1) Zero vector space $\{0\}$ is a subspace of V.
(2) V is a subspace of V.
- Theorem 2: (Test for a subspace)

If W is a nonempty subset of a vector space V, then W is a subspace of V if and only if the following conditions hold:
(1) If u and v are in W, then $u+v$ is in W.
(2) If u is in W and c is any scalar, then $c u$ is in W.

- Notes:
(1) If u and v are in W, c and d are any scalars, then $c u+d v$ is in $W . \Rightarrow W$ is a subspace of V.
(2) If W is a subspace of a vector space V, then W contains the zero vector $\mathbf{0}$ of V.
- Example 3: Subspaces of R^{2}

$W=R^{2}$
(1) $\{0\}$
(2) Lines through the origin
(3) R^{2}
- Example 4: (A Subset of R^{2} That Is Not a Subspace) Show that the subset of R^{2} consisting of all points on $x^{2}+y^{2}=1$ is not a subspace.
points $(1,0)$ and $(0,1)$ are in the subset, but their $\operatorname{sum}(1,0)+(0,1)=(1,1)$ is not.
(not closed under addition)
- Example 5: Subspaces of R^{3}

(1) $\{0\}$
$0=(0,0,0)$
(2) Lines through the origin
(3) Planes through the origin
(4) R^{3}
- Example 6: (Determining subspaces of R^{2}) Which of the following two subsets is a subspace of R^{2} ?
(a) The set of points on the line given by $x+2 y=0$. Yes
(b) The set of points on the line given by $x+2 y=1$. No
- Example 7: (A subspace of $M_{2 \times 2}$) Let W be the set of all 2×2 symmetric matrices. Show that W is a subspace of the vector space $M_{2 \times 2}$, with the standard operations of matrix addition and scalar multiplication.
- Example 8: (The set of singular matrices is not a subspace of $M_{2 \times 2}$) Let W be the set of singular matrices of order 2 . Show that W is not a subspace of $M_{2 \times 2}$ with the standard operations.
- Theorem 3: (The intersection of two subspaces is a subspace) If V and W are both subspaces of a vector space U, then the intersection of V and W (denoted by $V \cap W$) is also a subspace of U.

3. Spanning Sets and Linear Independence

- Definition: A vector v in a vector space V is called a linear combination of the vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}$ in V if \boldsymbol{v} can be written in the form $\boldsymbol{v}=c_{1} \boldsymbol{v}_{1}+c_{2} \boldsymbol{v}_{2}+\ldots+c_{k} \boldsymbol{v}_{k}$ where $c_{1}, c_{2}, \ldots, c_{k}$ are scalars.
- Example 9: (Finding a Linear Combination)

Write the vector $\boldsymbol{v}=1+x+x^{2}$ in P_{2} as a linear combination of vectors in the set $S=\left\{\boldsymbol{v}_{1}=1, \boldsymbol{v}_{2}=1-x, \boldsymbol{v}_{3}=1-x^{2}\right\}$.

$$
\boldsymbol{v}=1+x+x^{2}=3 \boldsymbol{v}_{1}-\boldsymbol{v}_{2}-\boldsymbol{v}_{3}
$$

- Definition: Let $S=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}\right\}$ be a subset of a vector space V. The set S is a spanning set of V if every vector in V can be written as a linear combination of vectors in S. In such cases it is said that S spans V.
- The set $S=\left\{1, x, x^{2}\right\}$ spans P_{2} because any polynomial $p(x)=a+b x+c x^{2}$ in P_{2} can be written as: $p(x)=a(1)+b(x)+c\left(x^{2}\right)$.
- Definition: If $S=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}\right\}$ is a set of a vectors in a vector space V, then the span of S is the set of all linear combinations of the vectors in S.

$$
\operatorname{span}(S)=\left\{c_{1} \boldsymbol{v}_{1}+c_{2} \boldsymbol{v}_{2}+\cdots+c_{k} \boldsymbol{v}_{k} \mid \forall c_{i} \in R\right\}
$$

The span of S is denoted by: $\operatorname{span}(S)$ or $\operatorname{span}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, v_{k}\right\}$. When $\operatorname{span}(S)=V$, it is said that V is spanned by $\left\{v_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}\right\}$, or that S spans V.

- Example 10: (A Geometric View of Spanning in R^{3})

$\operatorname{span}\{v\}$ is the line through the origin determined by v

$\operatorname{span}\left\{v_{1}, v_{2}\right\}$ is the plane through the origin determined by v_{1} and v_{2}
- Theorem 4: $(\operatorname{Span}(S)$ is a subspace of $V)$ If $S=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}\right\}$ is a set of vectors in a vector space V, then
(a) $\operatorname{span}(S)$ is a subspace of V.
(b) $\operatorname{span}(S)$ is the smallest subspace of V that contains S.
- Example 11: (Finding subspace spanned by a set of vectors)

Find the vector subspace spanned by the vectors $\left\{v_{1}=(1,1,1), v_{2}=(1,2,3)\right\}$

$$
\begin{aligned}
& \boldsymbol{x}=(x, y, z) \in \operatorname{span}\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right) \Rightarrow \boldsymbol{x}=\alpha \boldsymbol{v}_{1}+\beta \boldsymbol{v}_{2}=\alpha(1,1,1)+\beta(1,2,3) \\
& x=\alpha+\beta \quad \alpha=x-\beta \\
& y=\alpha+2 \beta \Rightarrow y=x+\beta \Rightarrow 2 y-z=x \\
& z=\alpha+3 \beta \quad z=x+2 \beta \\
& \Rightarrow \operatorname{span}\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right)=\left\{(x, y, z) \in R^{3} \mid x-2 y+z=0\right\}
\end{aligned}
$$

- Definition: A set of vectors $S=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}\right\}$ in a vector space V linearly independent (LI) when the vector equation $c_{1} \boldsymbol{v}_{1}+c_{2} \boldsymbol{v}_{2}+\ldots+c_{k} \boldsymbol{v}_{k}=\mathbf{0}$ has only the trivial solution $c_{1}=c_{2}=\ldots c_{k}=0$.
If there are also nontrivial solutions, then S is linearly dependent (LD).
- Example 12: (Testing for linearly independent) Determine whether $S=\left\{\boldsymbol{v}_{1}=1+x-2 x^{2}, \boldsymbol{v}_{2}=2+5 x-x^{2}, \boldsymbol{v}_{3}=x+x^{2}\right\}$ in P_{2} is LI or LD

$$
c_{1} \boldsymbol{v}_{\mathbf{1}}+c_{2} \boldsymbol{v}_{\mathbf{2}}+c_{3} \boldsymbol{v}_{\mathbf{3}}=\mathbf{0} \Rightarrow \begin{aligned}
c_{1}+2 c_{2} & =0 \\
c_{1}+5 c_{2}+c_{3} & =0 \\
-2 c_{1}-c_{2}+c_{3} & =0
\end{aligned}
$$

$$
\Rightarrow\left[\begin{array}{rrr|r}
1 & 2 & 0 & 0 \\
1 & 5 & 1 & 0 \\
-2 & -1 & 1 & 0
\end{array}\right] \xrightarrow{\text { Gauss Elimination }}\left[\begin{array}{ccc|c}
1 & 2 & 0 & 0 \\
1 & 1 & 1 / 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \Rightarrow \text { Infinitely many solutions }
$$

4. Basis and Dimension

- Definition: A set of vectors $S=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ in a vector space V is a basis for V when the conditions below are true:

1. S spans V.
2. S is linearly independent.
 Sets

- The standard basis for R^{n} :

$S=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\} \quad e_{1}=(1,0, \ldots, 0), e_{2}=(0,1, \ldots, 0), e_{n}=(0,0, \ldots, 1)$
Example: $R^{4} S=\{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)\}$
- The standard basis for $M_{m \times n}$ matrix space: $\left\{E_{i j} \mid 1 \leq i \leq m, 1 \leq j \leq n\right\}$

Example: $M_{2 \times 2} \quad S=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$

- Theorem 5: (Uniqueness of basis representation) If $S=\left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{\boldsymbol{n}}\right\}$ is a basis for a vector space V, then every vector in V can be written in one and only one way as a linear combination of vectors in S.
- Theorem 6: (Bases and linear dependence) If $S=\left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}, \ldots, \boldsymbol{v}_{\boldsymbol{n}}\right\}$ is a basis for a vector space V, then every set containing more than n vectors in V is linearly dependent.
- Theorem 7: (Number of vectors in a basis) If a vector space V has one basis with n vectors, then every basis for V has n vectors.
- Definition: A vector space V is called finite dimensional, if it has a basis consisting of a finite number of elements.
- Definition: The dimension of a finite dimensional vector space V is defined to be the number of vectors in a basis for V.
V : a vector space, S : a basis for $V \Rightarrow \operatorname{dim}(V)=\#(S) \quad$ (the number of vectors in S)
- Notes:
(1) $\operatorname{dim}(\{\mathbf{0}\})=0$
(2) $\operatorname{dim}(V)=n, S \subseteq V$
S : a Ll set

$$
\Rightarrow \#(S) \leq n
$$

S : a generating set $\Rightarrow \#(S) \geq n$
S : a basis $\quad \Rightarrow \#(S)=n$

5. Rank and Nullity of a Matrix

The Three Fundamental Spaces of a Matrix If A is an $m x n$ matrix, then

- Definition: The subspace of R^{n} spanned by the row vectors of A is denoted by $\operatorname{row}(A)=R S(A)$ and is called the row space of A.
- Definition: The subspace of R^{m} spanned by the column vectors of A is denoted by $\operatorname{col}(A)=C S(A)$ and is called the column space of A.
- Definition: The solution space of the homogeneous system $A \boldsymbol{x}=\mathbf{0}$, which is a subspace of R^{n}, is denoted by $\operatorname{null}(A)=N S(A)$ and is called the null space of A.
- Theorem 8: (Row and column space have equal dimensions) If A is an $m \mathrm{x} n$ matrix, then the row space and the column space of A have the same dimension $\operatorname{dim}(R S(A))=\operatorname{dim}(C S(A))$.
- Theorem 9: (Solution of a system of linear equations)

The system of linear equations $A x=b$ is consistent if and only if b is in the column space of A.

- Definition: The dimension of the row (or column) space of a matrix A is called the rank of A and is denoted by $\operatorname{rank}(A): \operatorname{rank}(A)=\operatorname{dim}(R S(A))=\operatorname{dim}(C S(A))$.
- Definition: The dimension of the nullspace of A is called the nullity of A : $\operatorname{nullity}(A)=\operatorname{dim}(N S(A))$.
- Theorem 10: If A is any matrix, then $\operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right)$.
- Notes:
(1) The maximum number of linearly independent vectors in a matrix is equal to the number of non-zero rows in its row echelon matrix.
(2) The number of leading 1 's in the reduced row-echelon form of A is equal to the rank of A.
(3) The number of free variables in the reduced row-echelon form of A is equal to the nullity of A.
- Theorem 9: (Consistency of $A x=b$)

If $\operatorname{rank}([A \mid \boldsymbol{b}])=\operatorname{rank}(A)$, then the system $A \boldsymbol{x}=\boldsymbol{b}$ is consistent.

- Notes:
(1) If $\operatorname{rank}(A)=\operatorname{rank}(A \mid \boldsymbol{b})=n$, then the system $A \boldsymbol{x}=\boldsymbol{b}$ has a unique solution.
(2) If $\operatorname{rank}(A)=\operatorname{rank}(A \mid \boldsymbol{b})<n$, then the system $A \boldsymbol{x}=\boldsymbol{b}$ has ∞-many solutions.
(3) If $\operatorname{rank}(A)<\operatorname{rank}(A \mid \boldsymbol{b})$, then the system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ is inconsistent.
- Example 13: (Rank by Row Reduction)

$$
\begin{aligned}
& A=\left[\begin{array}{rrrr}
1 & 1 & -1 & 3 \\
2 & -2 & 6 & 8 \\
3 & 5 & -7 & 8
\end{array}\right] \xrightarrow{\text { Gauss Elimination }}\left[\begin{array}{rrrr}
1 & 1 & -1 & 3 \\
0 & 1 & -2 & -\frac{1}{2} \\
0 & 0 & 0 & 0
\end{array}\right] \\
& \operatorname{rank}(A)=2(2 \text { non-zero rows }) \quad \operatorname{nullity}(A)=2(2 \text { free variables })
\end{aligned}
$$

- Example 14: (Finding the solution set of a nonhomogeneous system)

$$
\begin{aligned}
x_{1}+x_{2}-x_{3}= & -1 \\
x_{1}+x_{3} & =3 \\
3 x_{1}+2 x_{2}-x_{3} & =1
\end{aligned}
$$

$$
A=\left[\begin{array}{rrr}
1 & 1 & -1 \\
1 & 0 & 1 \\
3 & 2 & -1
\end{array}\right] \xrightarrow{\text { Gauss-Jordan Elimination }}\left[\begin{array}{rrr}
1 & 0 & 1 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& {[A \vdots \boldsymbol{b}]=\left[\begin{array}{rrr:r}
1 & 1 & -1 & -1 \\
1 & 0 & 1 & 3 \\
3 & 2 & -1 & 1
\end{array}\right] \xrightarrow{\text { Gauss-Jordan Elimination }}\left[\begin{array}{rrr:r}
1 & 0 & 1 & 3 \\
0 & 1 & -2 & -4 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
& x_{1}+x_{3}=3 \quad x_{1}=3-x_{3} \\
& x_{2}-2 x_{3}=-4 \quad \Rightarrow \quad x_{2}=-4+2 x_{3}
\end{aligned}
$$

letting $x_{3}=t$, then the solutions are: $\{(3-t,-4+2 t, t) \mid t \in R\}$
So the system has infinitely many solutions (consistent)

- Note: $\operatorname{rank}(A)=\operatorname{rank}([A ; b])=2$
- Theorem 10: (Dimension Theorem for Matrices)

If A is a matrix with n columns, then $\operatorname{rank}(A)+\operatorname{nullity}(A)=n$.

- Example 15: (Rank and nullity of a matrix)

Find the rank and nullity of $A=\left[\begin{array}{rrrrr}1 & 0 & -2 & 1 & 0 \\ 0 & -1 & -3 & 1 & 3 \\ -2 & -1 & 1 & -1 & 3 \\ 0 & 3 & 9 & 0 & -12\end{array}\right]$

$$
A=\left[\begin{array}{rrrrr}
1 & 0 & -2 & 1 & 0 \\
0 & -1 & -3 & 1 & 3 \\
-2 & -1 & 1 & -1 & 3 \\
0 & 3 & 9 & 0 & -12
\end{array}\right] \xrightarrow{\text { G.J. Elimination }} B=\left[\begin{array}{rrrrr}
1 & 0 & -2 & 0 & 1 \\
0 & 1 & 3 & 0 & -4 \\
0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$$
\operatorname{rank}(A)=3 \quad(\text { the number of nonzero rows in } B)
$$

$$
\operatorname{nullity}(A)=n-\operatorname{rank}(A)=5-3=2
$$

- Summary of equivalent conditions for square matrices:

If A is an $n \mathrm{x} n$ matrix, then the following conditions are equivalent:
(1) A is invertible
(2) $A \boldsymbol{x}=\boldsymbol{b}$ has a unique solution for any $n \times 1$ matrix b.
(3) $A \boldsymbol{x}=\mathbf{0}$ has only the trivial solution.
(4) A is row-equivalent to I_{n}.
(5) $|A| \neq 0$.
(6) $\operatorname{rank}(A)=n$.
(7) The n row vectors of A are linearly independent.
(8) The n column vectors of A are linearly independent.
6. Coordinates and Change of Basis

- Coordinate representation relative to a basis: Let $B=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ be an ordered basis for a vector space V and let x be a vector in V such that: $\boldsymbol{x}=c_{1} \boldsymbol{v}_{1}+c_{2} \boldsymbol{v}_{2}+\ldots+c_{n} \boldsymbol{v}_{n}$. The scalars $c_{1}, c_{2}, \ldots, c_{n}$ are called the coordinates of x relative to the basis B. The coordinate matrix (or coordinate vector) of x relative to B is the column matrix in R^{n} whose components are the coordinates of x.

$$
[\boldsymbol{x}]_{B}=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right]
$$

- Example 16 : (Coordinates and components in R^{n})

Find the coordinate matrix of $x=(-2,1,3)$ in R^{3} relative to the standard basis S.

$$
[x]_{S}=\left[\begin{array}{r}
-2 \\
1 \\
3
\end{array}\right]
$$

$$
\boldsymbol{x}=(-2,1,3)=-2(1,0,0)+1(0,1,0)+3(0,0,1)
$$

- Example 17: (Finding a coordinate matrix relative to a nonstandard basis) Find the coordinate matrix of $x=(1,2,-1)$ in R^{3} relative to the (nonstandard) basis $B^{\prime}=\left\{u_{1}, u_{2}, u_{3}\right\}=\{(1,0,1),(0,-1,2),(2,3,-5)\}$

$$
\Rightarrow\left[\begin{array}{rrrr}
1 & 0 & 2 & 1 \\
0 & -1 & 3 & 2 \\
1 & 2 & -5 & -1
\end{array}\right] \xrightarrow{\text { G. J. Elimination }}\left[\begin{array}{rrrr}
1 & 0 & 0 & 5 \\
0 & 1 & 0 & -8 \\
0 & 0 & 1 & -2
\end{array}\right] \Rightarrow[x]_{B^{\prime}}=\left[\begin{array}{r}
5 \\
-8 \\
-2
\end{array}\right]
$$

$$
\begin{aligned}
& \boldsymbol{x}=c_{1} \boldsymbol{u}_{\mathbf{1}}+c_{2} \boldsymbol{u}_{\mathbf{2}}+c_{3} \boldsymbol{u}_{\mathbf{3}} \Rightarrow(1,2,-1)=c_{1}(1,0,1)+c_{2}(0,-1,2)+c_{3}(2,3,-5) \\
& \Rightarrow \quad \begin{aligned}
c_{1}+2 c_{3} & =1 \\
-c_{2}+3 c_{3} & =2 \\
c_{1}+2 c_{2}-5 c_{3} & =-1
\end{aligned} \text { i.e. }\left[\begin{array}{rrr}
1 & 0 & 2 \\
0 & -1 & 3 \\
1 & 2 & -5
\end{array}\right]\left[\begin{array}{r}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right]
\end{aligned}
$$

Change of Basis In R^{n}

- Change of basis: Given the coordinates of a vector relative to a basis B, find the coordinates relative to another basis B^{\prime}.
In Example 17, let B be the standard basis. Finding the coordinate matrix of $\boldsymbol{x}=(1,2,-1)$ relative to the basis B^{\prime} becomes solving for c_{1}, c_{2}, and c_{3} in the matrix equation.

$$
\begin{array}{r}
{\left[\begin{array}{rrr}
1 & 0 & 2 \\
0 & -1 & 3 \\
1 & 2 & -5
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{r}
1 \\
2 \\
P
\end{array}\right]} \\
{[x]_{B^{\prime}} \quad[x]_{B}}
\end{array}
$$

P is the transition matrix from B^{\prime} to B,

$$
\begin{array}{ll}
P[x]_{B^{\prime}}=[x]_{B} & \text { Change of basis from } B^{\prime} \text { to } B \\
{[x]_{B^{\prime}}=P^{-1}[x]_{B}} & \text { Change of basis from } B \text { to } B^{\prime} \\
\hline
\end{array}
$$

$$
\begin{aligned}
{\left[\begin{array}{rrr}
-1 & 4 & 2 \\
3 & -7 & -3 \\
1 & -2 & -1
\end{array}\right]\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]=} & {\left[\begin{array}{r}
5 \\
-8 \\
-2
\end{array}\right] } \\
P^{-1} & {[x]_{B} }
\end{aligned}{ }^{[x]_{B^{\prime}}} .
$$

- Theorem 11: (The inverse of a transition matrix) If P is the transition matrix from a basis B^{\prime} to a basis B in R^{n}, then
(1) P is invertible.
(2) The transition matrix from B to B^{\prime} is P^{-1}.
- Notes:

$$
B=\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{n}\right\}, \quad B^{\prime}=\left\{\boldsymbol{u}_{1}^{\prime}, \boldsymbol{u}_{2}^{\prime}, \ldots, \boldsymbol{u}_{n}^{\prime}\right\}
$$

$$
[\boldsymbol{v}]_{B}=\left[\left[\boldsymbol{u}_{1}^{\prime}\right]_{B},\left[\boldsymbol{u}_{2}^{\prime}\right]_{B}, \ldots,\left[\boldsymbol{u}_{n}^{\prime}\right]_{B}\right][\boldsymbol{v}]_{B^{\prime}}=P[\boldsymbol{v}]_{B^{\prime}}
$$

$$
[\boldsymbol{v}]_{B^{\prime}}=\left[\left[\boldsymbol{u}_{1}\right]_{B^{\prime}},\left[\boldsymbol{u}_{2}\right]_{B^{\prime}}, \ldots,\left[\boldsymbol{u}_{n}\right]_{B^{\prime}}\right][\boldsymbol{v}]_{B}=P^{-1}[\boldsymbol{v}]_{B}
$$

- Theorem 12: (Transition matrix from B to B^{\prime}) Let $B=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ and $B^{\prime}=\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{n}\right\}$ be two bases for R^{n}. Then the transition matrix P^{-1} from B to B^{\prime} can be found by using Gauss-Jordan elimination on the $n \times 2 n$ matrix $\left[B^{\prime}: B\right]$ as follows: $\left[B^{\prime}: B\right] \longrightarrow\left[I_{n}: P^{-1}\right]$
- Example 18: (Finding a transition matrix) $B=\{(-3,2),(4,-2)\}$ and $B^{\prime}=\{(-1,2),(2,-2)\}$ are two bases for R^{2}
(a) Find the transition matrix from B^{\prime} to B.
(b) Let $[\boldsymbol{v}]_{B^{\prime}}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$, find $[\boldsymbol{v}]_{B}$
(c) Find the transition matrix from B to B^{\prime}.
(a) $\left[\begin{array}{rrrr}-3 & 4 \vdots & -1 & 2 \\ 2 & -2 & 2 & -2\end{array}\right] \xrightarrow[B]{\text { G. J. Elimination }} \underset{B^{\prime}}{\left[\begin{array}{cccc}1 & 0 & 3 & -2 \\ 0 & 1 & 2 & -1\end{array}\right]}$
(b) $[\boldsymbol{v}]_{B^{\prime}}=\left[\begin{array}{c}1 \\ 2\end{array}\right] \Rightarrow[\boldsymbol{v}]_{B}=P[\boldsymbol{v}]_{B^{\prime}}=\left[\begin{array}{ll}3 & -2 \\ 2 & -1\end{array}\right]\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{r}-1 \\ 0\end{array}\right]$
$\Rightarrow P=\left[\begin{array}{ll}3 & -2 \\ 2 & -1\end{array}\right]$
(the transition matrix from B^{\prime} to B)
- Check: $[v]_{B^{\prime}}=\left[\begin{array}{l}1 \\ 2\end{array}\right] \Rightarrow \boldsymbol{v}=(1)(-1,2)+(2)(2,-2)=(3,-2)$

$$
[\boldsymbol{v}]_{B}=\left[\begin{array}{r}
-1 \\
0
\end{array}\right] \Rightarrow \boldsymbol{v}=(-1)(3,-2)+(0)(4,-2)=(3,-2)
$$

> (the transition matrix from B to B^{\prime})

- Check: $P P^{-1}=\left[\begin{array}{ll}3 & -2 \\ 2 & -1\end{array}\right]\left[\begin{array}{ll}-1 & 2 \\ -2 & 3\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=I_{2}$
- Example 19: (Finding a transition matrix)

Find the transition matrix from B to B^{\prime} for The bases for R^{3} below.

$$
\begin{aligned}
& B=\{(1,0,0),(0,1,0),(0,0,1)\} \text { and } B^{\prime}=\{(1,0,1),(0,-1,2),(2,3,-5)\} \\
& B=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad B^{\prime}=\left[\begin{array}{rrr}
1 & 0 & 2 \\
0 & -1 & 3 \\
1 & 2 & -5
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{rrr}
-1 & 4 & 2 \\
3 & -7 & -3 \\
1 & -2 & -1
\end{array}\right]\left[\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right]=\left[\begin{array}{r}
5 \\
-8 \\
-2
\end{array}\right] \text { the result is the same as that obtained }}
\end{aligned}
$$

