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2. Orthonormal Bases: Gram-Schmidt Process 

3. Mathematical Models and Least Square Analysis

Chapter 5
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1. General Inner Product

(1) u, v = v, u 

(2) u, v + w = u, v + u, w 

(3) c u, v = cu, v 

(4) v, v ≥ 0 and v, v = 0 if and only if v = 0 

▪ Definition: Let u, v, and w be vectors in a real vector space V, and let c be any 

scalar. An inner product on V is a function that associates a real number 

u, v with each pair of vectors u and v and satisfies the following axioms:

▪ Notes:

(1) u.v = dot product (Euclidean inner product for Rn)

(2) u, v = general inner product for vector space V
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▪ Note: A vector space V with an inner product is called an inner product space.

Vector space: (V, + , .)

Inner product space: (V, + , ., , )

▪ Example 1: (Euclidean inner product for Rn)

The dot product in Rn satisfies the four axioms of an inner product.

u = (u1, u2, …, un), v = (v1, v2, …, vn) 

▪ Example 2: (A different inner product for Rn)

Show that the function defines an inner product on R2, where u = (u1, u2) and 

v = (v1, v2): u, v = u1v1 + 2u2v2.

(1) u, v = u1v1 + 2u2v2 = v1u1 + 2v2u2 = v, u
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(2) 

(3) c u, v = c (u1v1 + 2u2v2) = (cu1)v1 + 2(cu2)v2 = cu, v

(4) 

▪ Note: (An inner product on Rn)

(weights)

https://manara.edu.sy/


https://manara.edu.sy/

https://manara.edu.sy/Inner Product Spaces 6/332024-2025

Show that the following function is not an inner product on R3

▪ Example 3: (A function that is not an inner product)

Let v = (1, 2, 1), then v, v = (1)(1) − 2(2)(2) + (1)(1) = −6  0

Axiom 4 is not satisfied. Thus this function is not an inner product on R3

Let u, v and w be vectors in an inner product space V, and let c be any real 

number. 

 (1) 0, v = v, 0 = 0

 (2) u + v, w = u, w + v, w

 (3) u, cv = c u, v

▪ Theorem 1: (Properties of inner products)
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▪ Example 4: (The Standard Inner Product on Mn(R))

, ( ), , tr( )TnA B M R A B AB   =

1 2 1 2

3 4 3 4

,
a a b b

A B
a a b b

   
= =   

   
for the 2×2 matrices

1 1 2 2 3 3 4 4, tr( )TA B AB a b a b a b a b  = = + + +

2 2 2 2

1 2 3 4A A A a a a a=   = + + +,

1 2 1 0
,

3 4 3 2
A B

−   
= =      

, tr( ) 1( 1) 2(0) 3(3) 4(2) 16TA B AB  = = − + + + =

2 2 2 21 2 3 4 30, 14A A A B B B=   = + + + = =   =, ,
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▪ Example 5: (The Standard Inner Product on Pn)

0 1 0 1

2 2 2
0 0 1 1 0 1

,

, ,

 = + + + = + + +

  = + + + =   = + + +

n n
n n n

n n n

p q P p a a x a x q b b x b x

p q a b a b a b p p p a a a

▪ Norm (length) of u:

▪ Note:

▪ Distance between u and v:

▪ Angle between two nonzero vectors u and v:

u and v are orthogonal if u, v = 0▪ Orthogonal:
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▪ Notes:

(1) If             , then v is called a unit vector

(2) (the unit vector in the direction of v)Normalizing

(1)   (2)               if and only if u = 0  (3)

▪ Properties of norm:

(1) d(u, v) ≥ 0  (2) d(u, v) = 0 if and only if u = v  (3) d(u, v) = d(v, u) 

▪ (Properties of distance)

▪ Note: Norm, Distance and Orthogonality depend on the inner product being 

used.
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Euclidean inner product:

2 2 2 2 2 21 0 1, 0 1 1, ( ) 1 ( 1) 2,u v u v u v= + = = + = = − = + − =d

1 1 2 23 2u v u v  = +u v,Weighted Euclidean inner product:

2 2 2 2

2 2

3(1) 2(0) 3, 3(0) 2(1) 2

( ) 3(1) 2( 1) 5d

= + = = + =

= − = + − =

u v

u v u v,

▪ Example 6: u = (1, 0) and v = (0, 1) in R2

Euclidean inner product:

Weighted Euclidean inner product: 1 1 2 23 2u v u v  = +u v,

1 1 2 23 2 3(1)(1) + 2( 1)(1) 1 0u v u v  = + = − = u v,

▪ Example 7: u = (1, 1) and v = (1, −1) in R2
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▪ Theorem 2: Let u and v be vectors in an inner product space V.

(1) Cauchy-Schwarz inequality:   

(2) Triangle inequality:  

(3) Pythagorean theorem: u and v are orthogonal iff

Orthogonal Complements

▪ Definition: If W is a subspace of a real inner product V, then the set of all 

vectors in V that are orthogonal to every vector in W is called the orthogonal 

complement of W and is denoted by the symbol      .

If W is a subspace of a real inner product V, then:

   (a) is a subspace of V  (b)  

▪ Theorem 3: (Properties of Orthogonal Complements)
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2. Orthonormal Bases: Gram-Schmidt Process

Definition: A set S of vectors in an inner product space V is called an 

orthogonal set if every pair of vectors in the set is orthogonal.

▪ Example 8: (Orthogonal Complements)

in R2
in R3
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▪ Note: If S is a basis, then it is called an orthogonal/orthonormal basis.

Show that the following set is an orthonormal basis.

▪ Example 9: (A nonstandard orthonormal basis for R3)

Thus S is an 

orthonormal set

An orthogonal set in which each vector is a unit vector is called orthonormal.
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If S = {v1, v2, …, vn} is an orthogonal set of nonzero vectors in an inner product 

space V, then S is linearly independent. 

with the inner product

the standard basis B = {1, x, x2, x3} is orthonormal

0 0 1 1 2 2 3 3,p q a b a b a b a b  = + + +

▪ Example 10: (An orthonormal basis for P3)

▪ Theorem 4: (Orthogonal sets are linearly independent)

If S = {v1, v2, …, vn} is an orthogonal/orthonormal basis for an inner product 

space V, and if u is any vector in V, then

▪ Theorem 5: (Coordinates relative to an orthonormal basis) 

S orthogonal 
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S orthonormal 

▪ Note: If S = {v1, v2, …, vn} is an orthogonal/orthonormal basis for an inner 

product space V and w V, then the corresponding coordinate matrix of w 

relative to B is

▪ Example 11: (Representing vectors relative to an orthonormal basis)

Find the coordinates of vector w = (5, −5, 2) relative to the following 

orthonormal basis for R3

S orthonormal 
S orthogonal 
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Orthogonal Projections

If W is a finite-dimensional subspace of an inner 

product space V, then every vector u in V can be 

expressed in exactly one way as u = w1 + w2, where 

w1 is in W and w2 is in      .

▪ Theorem 6: (Projection Theorem) 
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▪ Theorem 7: (formulas for calculating orthogonal projection)

Let W be a finite-dimensional subspace of an inner product space V. If S = 

{v1, v2, …, vr} is an orthogonal/orthonormal basis for W, then 

S orthogonal 

S orthonormal 

The Gram–Schmidt Process

▪ Theorem 8: (Projection Theorem)

Every nonzero finite-dimensional inner product space has an orthonormal 

basis. 
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Proof (Gram-Schmidt orthonormalization construction)

Let W be any nonzero finite-dimensional subspace of an inner product space, 

and suppose that {u1, u2, …, ur} is any basis for W.

Step 1: Let v1 = u1

Step 2:

W1 = span(v1) and  

Step 3:

W2 = span(v1, v2) and  

Continuing in this way we will produce after r steps an 

orthogonal set of nonzero vectors {v1, v2, …, vr}.
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By normalizing these basis vectors we can obtain an orthonormal basis.

(1) Let B = {u1, u2, …, un} is a basis for an inner product space V 

(2) Let B'  = {v1, v2, …, vn}, where

▪ Theorem 9: (Gram-Schmidt orthonormalization process)

Then B′ is an orthogonal basis for V
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(3) Let            

    Then B ″ = {w1, w2, …, wn} is an orthonormal basis for V

Also, span{u1, u2, …, un} = span{w1, w2, …, wn} for k = 1, 2, ..., n

Apply the Gram-Schmidt orthonormalization process to the basis B for R2  

▪ Example 12: (Applying the Gram-Schmidt orthonormalization process)

The set B′ = {v1, v2} is an orthogonal basis for R2

https://manara.edu.sy/


https://manara.edu.sy/

https://manara.edu.sy/Inner Product Spaces 21/332024-2025

The set B″ = {w1, w2} is an orthonormal basis for R2
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Apply the Gram-Schmidt orthonormalization process to the basis B for R3  

▪ Example 13: (Applying the Gram-Schmidt orthonormalization process)

The set B′ = {v1, v2, v3} is an orthogonal basis for R3
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The set B″ = {w1, w2, w3} is an orthonormal basis for R3

3. Mathematical Models and Least Square Analysis

Best Approximation; Least Squares

▪ Least Squares Problem: Given Ax = b of m equations in n unknowns, find x in 

Rn that minimizes            with respect to the Euclidean inner product on Rm. 

We call x, if it exists, a least squares solution of Ax = b, b − Ax the least 

squares error vector, and                the least squares error.

b xA−

b xA−
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1

2 2 2 21
1 2b x b x

 
 

− =  − = + + + 
 
 

m

m

e
eA A e e e

e

▪ Note: For every vector x in Rn, the product Ax is in the column space of A 

because it is a linear combination of the column vectors of A. Find a least 

squares solution of Ax = b is equivalent to find a vector       in the col(A) that is 

closest to b (it minimizes the length of the vector b − Ax)                               .

Ax

col( )projx b = AA
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If W is a finite-dimensional subspace of an inner product space V, and if b is a 

vector in V, then projW b is the best approximation to b from W in the sense 

that for every vector w in W that is different from projW b.

▪ Theorem 10: (Best Approximation Theorem)

projb b b w−  −W

▪ If V = Rn and W = col(A), then the best approximation to b from col(A) is 

projcol(A)b.

▪ Finding Least Squares Solutions: ATAx = ATb 

This is called the normal equations associated with Ax = b. 

Find the Least Squares Solution, the least squares error 

vector, and the least squares error of the linear system:

4
23 1
4 32

yx
yx
yx

− =

+ =

− + =

▪ Example 14: (Finding Least Squares Solutions)
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1 1
14 331 2 3 2

3 211 2 4 2 4

4
131 2 1

101 2 4 3

14 3 1 17/95

3 21 10 143/285

b

x b

 −
−    −= =     −−   −  

 
   −  = =    −   

 

−         
=  =  =         −         

T

T

T T

A A

A

x x
A A A

y y

1232/285

154/285 , and 4 556

77/57

A A

 
 − = − − 
 
  

.b x b x
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▪ Theorem 11: (a unique least squares solution)

If A is an mxn matrix with linearly independent column vectors, then for every 

mx1 matrix b, the linear system Ax = b has a unique least squares solution. 

This solution is given by: x = (ATA)−1ATb.

Moreover, if W is the column space of A, then the orthogonal projection of b 

on W is: projW b = Ax = A(ATA)−1ATb.

Mathematical Modeling Using Least Squares

▪ Fitting a Curve to Data

A common problem in experimental work is to find a mathematical relationship 

y = f(x) between two variables x and y by “fitting” a curve to points in the plane

(x1, y1), (x2, y2), ..., (xn, yn).
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mathematical model

Least Squares Fit of a Straight Line

1 1 1 1

2 2 2 2

1

1

1

v y

n n n n

y a bx x y
y a bx x ya

M
b

y a bx x y

= +    
   = +  

 = = =        
= +       

y = a + bx
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1( )*v y v y v y


−



 
=  =  = = 

 

T T T Ta
M M M M M M M

b

y a b x = + Least squares line of best fit or the regression line

It minimizes
2 2 2 2

1 1 2 2[ ( )] [ ( )] [ ( )]y v n nM y a bx y a bx y a bx− = − + + − + + + − +

1 1 1 2 2 2( ) , ( ) , , ( )n n nd y a bx d y a bx d y a bx= − + = − + = − + residuals
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Find the least squares straight line fit to the points (2, 1), (5, 2), (7, 3), and (8, 3)

▪ Example 15: (Least Squares Straight Line Fit)

1
1

2
7
5

14

1 2

1 1 1 1 1 5 4 22

2 5 7 8 1 7 22 142

1 8

1

1 1 1 1 2 9

2 5 7 8 3 57

3

14 22 9 142 22 9
( )

22 142 57 22 4 5784

*

y

v y
−

−

 
    

= =        
 

 
    

= =        
 

 −       
= = = =         −          

T

T

T T

M M

M

M M M

2 5

7 14
y x= +
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Least Squares Fit of a Polynomial

(x1, y1), (x2, y2), ..., (xn, yn)

2
0 1 2

m
my a a x a x a x= + + + +

m
m
m

m

m
n n m n n

a a x a x a x y

a a x a x a x y

a a x a x a x y

+ + + + =

+ + + + =

+ + + + =

2
0 1 1 2 1 1 1

2
0 1 2 2 2 2 2

2
0 1 2

2
1 1 1 0 1

2
1 22 2 2

2

1

1

1

v y

m

m

m m nn n n

x x x a y
a yx x xM

a yx x x

     
     
 = = =   
     
         

1( )v y v y v yT T T TM M M M M M M−=  =  =*
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Laboratory experiment

Newton’s second law of motion
2

0 0

1

2
s s v t gt= + +

Approximate g

Let
2

0 1 2s a a t a t= + +

(0.1,−0.18), (0.2, 0.31), (0.3, 1.03), (0.4, 2.48), (0.5, 3.73)

▪ Example 16: (Fitting a Quadratic Curve to Data)
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0
1

1

2

0 4

( ) 0 35

16 1

T T

a

a M M M

a



  −



  − 
   = = =   
    

v y
.

.

.

2
1 1

1
2

2 2 2
2

33 3
2

4
4 4

2 5
5 5

1 1 0 1 0 01 0 18
1 1 0 2 0 04 0 31

,1 0 3 0 09 1 031

1 0 4 0 16 2 481
1 0 5 0 25 3 73

1

y

t t s
t t s

sM t t
st t
st t

 
−     

     
     = = = =
     
     
          

. . .

. . .

. . .

. . .

. . .

2
22 2(16.1) 32 2 feet/g a s= = = .

0 0 0 4 feets a= = − . 0 1 0 35 feet/sv a= = .
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