

CECC122: Linear Algebra and Matrix Theory Lecture Notes 6: Inner Product Spaces

Ramez Koudsieh, Ph.D.

Faculty of Engineering Department of Informatics Manara University

Chapter 5

Inner Product Spaces

- 1. General Inner Product
- 2. Orthonormal Bases: Gram-Schmidt Process
- 3. Mathematical Models and Least Square Analysis

1. General Inner Product

Definition: Let u, v, and w be vectors in a real vector space V, and let c be any scalar. An inner product on V is a function that associates a real number <u, v> with each pair of vectors u and v and satisfies the following axioms:

$$(1) < u, v > = < v, u > 0$$

$$(2) < u, v + w > = < u, v > + < u, w >$$

(3)
$$c < u, v > = < cu, v >$$

- (4) $\langle v, v \rangle \ge 0$ and $\langle v, v \rangle = 0$ if and only if v = 0
- Notes:

(1) $u.v = dot product (Euclidean inner product for <math>R^n$)

(2) $\langle u, v \rangle =$ general inner product for vector space V

- Note: A vector space V with an inner product is called an inner product space.
 Vector space: (V, +, .)
 Inner product space: (V, +, ., <, >)
- Example 1: (Euclidean inner product for Rⁿ)

The dot product in R^n satisfies the four axioms of an inner product.

$$u = (u_1, u_2, \dots, u_n), v = (v_1, v_2, \dots, v_n)$$

 $\langle \boldsymbol{u}, \boldsymbol{v} \rangle = \boldsymbol{u} \cdot \boldsymbol{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$

• Example 2: (A different inner product for \mathbb{R}^n) Show that the function defines an inner product on \mathbb{R}^2 , where $u = (u_1, u_2)$ and $v = (v_1, v_2)$: $\langle u, v \rangle = u_1v_1 + 2u_2v_2$.

(1) <
$$u$$
, v > = u_1v_1 + $2u_2v_2$ = v_1u_1 + $2v_2u_2$ = < v , u >

(2)
$$w = (w_1, w_2)$$

 $< u, v + w > = u_1(v_1 + w_1) + 2u_2(v_2 + w_2)$
 $= u_1v_1 + u_1w_1 + 2u_2v_2 + 2u_2w_2$
 $= (u_1v_1 + 2u_2v_2) + (u_1w_1 + 2u_2w_2)$
 $= < u, v > + < u, w >$
(3) $c < u, v > = c (u_1v_1 + 2u_2v_2) = (cu_1)v_1 + 2(cu_2)v_2 = < cu, v >$
(4) $< v, v > = v_1^2 + 2v_2^2 \ge 0$
 $< v, v > = 0 \Longrightarrow v_1^2 + 2v_2^2 = 0 \Longrightarrow v_1 = v_2 = 0$ $(v = 0)$

• Note: (An inner product on R^n)

 $< u, v > = c_1 u_1 v_1 + c_2 u_2 v_2 + \dots + c_n u_n v_n, c_i > 0$ (weights)

Example 3: (A function that is not an inner product)

Show that the following function is not an inner product on R^3

$$< u, v > = u_1 v_1 - 2u_2 v_2 + u_3 v_3$$

Let v = (1, 2, 1), then $\langle v, v \rangle = (1)(1) - 2(2)(2) + (1)(1) = -6 < 0$

Axiom 4 is not satisfied. Thus this function is not an inner product on R^3

Theorem 1: (Properties of inner products)

Let u, v and w be vectors in an inner product space V, and let c be any real number.

(1) <0,
$$v > = < v$$
, $0 > = 0$
(2) < $u + v$, $w > = < u$, $w > + < v$, $w >$
(3) < u , $cv > = c < u$, $v >$

• Example 4: (The Standard Inner Product on $M_n(R)$) $A, B \in M_n(R), \quad \langle A, B \rangle = \operatorname{tr}(AB^T)$ for the 2×2 matrices $A = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix}, \quad B = \begin{bmatrix} b_1 & b_2 \\ b_3 & b_4 \end{bmatrix}$ $\langle A, B \rangle = \operatorname{tr}(AB^T) = a_1b_1 + a_2b_2 + a_2b_3 + a_4b_4$

$$\|A\| = \sqrt{\langle A, A \rangle} = \sqrt{a_1^2 + a_2^2 + a_3^2 + a_4^2}$$

$$\|A\| = \sqrt{\langle A, A \rangle} = \sqrt{a_1^2 + a_2^2 + a_3^2 + a_4^2}$$

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} -1 & 0 \\ 3 & 2 \end{bmatrix}$$

$$\langle A, B \rangle = \operatorname{tr}(AB^T) = 1(-1) + 2(0) + 3(3) + 4(2) = 16$$

$$\|A\| = \sqrt{\langle A, A \rangle} = \sqrt{1^2 + 2^2 + 3^2 + 4^2} = \sqrt{30}, \quad \|B\| = \sqrt{\langle B, B \rangle} = \sqrt{14}$$

Example 5: (The Standard Inner Product on P_n)

$$p, q \in P_n \qquad p = a_0 + a_1 x + \dots + a_n x^n \qquad q = b_0 + b_1 x + \dots + b_n x^n$$
$$\langle p, q \rangle = a_0 b_0 + a_1 b_1 + \dots + a_n b_n \qquad \|p\| = \sqrt{\langle p, p \rangle} = \sqrt{a_0^2 + a_1^2 + \dots + a_n^2}$$

- Norm (length) of u: $||u|| = \sqrt{\langle u, u \rangle}$
- Note: $\|\boldsymbol{u}\|^2 = \langle \boldsymbol{u}, \boldsymbol{u} \rangle$
- Distance between u and v: $d(u, v) = ||u v|| = \sqrt{\langle u v, u v \rangle}$
- Angle between two nonzero vectors \boldsymbol{u} and \boldsymbol{v} : $\cos \theta = \frac{\langle \boldsymbol{u}, \boldsymbol{v} \rangle}{\|\boldsymbol{u}\| \|\boldsymbol{v}\|}, \ 0 \le \theta \le \pi$
- Orthogonal: $(u \perp v)$ u and v are orthogonal if $\langle u, v \rangle = 0$

Notes:

(1) If $\|v\| = 1$, then v is called a unit vector

(2) $\|v\| \neq 1$ Normalizing $\frac{v}{\|v\|}$ (the unit vector in the direction of v) $v \neq 0$

Properties of norm:

(1) $\|u\| \ge 0$ (2) $\|u\| = 0$ if and only if u = 0 (3) $\|cu\| = |c| \|u\|$

(Properties of distance)

(1) $d(u, v) \ge 0$ (2) d(u, v) = 0 if and only if u = v (3) d(u, v) = d(v, u)

Note: Norm, Distance and Orthogonality depend on the inner product being used.

• Example 6: u = (1, 0) and v = (0, 1) in \mathbb{R}^2 Euclidean inner product:

$$\|\boldsymbol{u}\| = \sqrt{1^2 + 0^2} = 1, \quad \|\boldsymbol{v}\| = \sqrt{0^2 + 1^2} = 1, \quad d(\boldsymbol{u}, \boldsymbol{v}) = \|\boldsymbol{u} - \boldsymbol{v}\| = \sqrt{1^2 + (-1)^2} = \sqrt{2}$$

Weighted Euclidean inner product: $\langle \boldsymbol{u}, \boldsymbol{v} \rangle = 3u_1v_1 + 2u_2v_2$

$$\|\boldsymbol{u}\| = \sqrt{3(1)^2 + 2(0)^2} = \sqrt{3}, \quad \|\boldsymbol{v}\| = \sqrt{3(0)^2 + 2(1)^2} = \sqrt{2}$$
$$d(\boldsymbol{u}, \boldsymbol{v}) = \|\boldsymbol{u} - \boldsymbol{v}\| = \sqrt{3(1)^2 + 2(-1)^2} = \sqrt{5}$$

• Example 7: u = (1, 1) and v = (1, -1) in \mathbb{R}^2 Euclidean inner product: $u.v = 1(1) + (-1)(1) = 0 \implies u \perp v$ Weighted Euclidean inner product: $\langle u, v \rangle = 3u_1v_1 + 2u_2v_2$ $\langle u, v \rangle = 3u_1v_1 + 2u_2v_2 = 3(1)(1) + 2(-1)(1) = 1 \neq 0$

- Theorem 2: Let u and v be vectors in an inner product space V. (1) Cauchy-Schwarz inequality: $|\langle u, v \rangle| \le ||u|| ||v||$
 - (2) Triangle inequality: $||u + v|| \le ||u|| + ||v||$
 - (3) Pythagorean theorem: u and v are orthogonal iff $||u + v||^2 = ||u||^2 + ||v||^2$

Orthogonal Complements

- Definition: If W is a subspace of a real inner product V, then the set of all vectors in V that are orthogonal to every vector in W is called the orthogonal complement of W and is denoted by the symbol W^{\perp} .
- Theorem 3: (Properties of Orthogonal Complements)
 If W is a subspace of a real inner product V, then:
 (a) W[⊥] is a subspace of V
 (b) W[⊥] ∩ W = {0}

2. Orthonormal Bases: Gram-Schmidt Process

Definition: A set *S* of vectors in an inner product space *V* is called an orthogonal set if every pair of vectors in the set is orthogonal.

$$S = \left\{ \boldsymbol{v}_1, \, \boldsymbol{v}_2, \cdots, \, \boldsymbol{v}_n \right\} \subseteq V \Longrightarrow \langle \boldsymbol{v}_i, \boldsymbol{v}_j \rangle = 0, \quad i \neq j$$

An orthogonal set in which each vector is a unit vector is called orthonormal.

$$S = \left\{ \boldsymbol{v}_1, \, \boldsymbol{v}_2, \cdots, \, \boldsymbol{v}_n \right\} \subseteq V \Longrightarrow \left\langle \boldsymbol{v}_i, \boldsymbol{v}_j \right\rangle = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

- Note: If S is a basis, then it is called an orthogonal/orthonormal basis.
- Example 9: (A nonstandard orthonormal basis for R³)
 Show that the following set is an orthonormal basis.

$$S = \{ (\mathbf{v}_{1} = \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0), (\mathbf{v}_{2} = -\frac{\sqrt{2}}{6}, \frac{\sqrt{2}}{6}, \frac{2\sqrt{2}}{3}), (\mathbf{v}_{3} = \frac{2}{3}, -\frac{2}{3}, \frac{1}{3}) \}$$

$$\mathbf{v}_{1} \cdot \mathbf{v}_{2} = -\frac{1}{6} + \frac{1}{6} + 0 = 0 \qquad \|\mathbf{v}_{1}\| = \sqrt{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} = \sqrt{\frac{1}{2} + \frac{1}{2} + 0} = 1$$

$$\mathbf{v}_{1} \cdot \mathbf{v}_{3} = \frac{2}{3\sqrt{2}} - \frac{2}{3\sqrt{2}} + 0 = 0 \qquad \|\mathbf{v}_{2}\| = \sqrt{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} = \sqrt{\frac{2}{36} + \frac{2}{36} + \frac{8}{9}} = 1$$

$$\mathbf{v}_{2} \cdot \mathbf{v}_{3} = -\frac{\sqrt{2}}{9} - \frac{\sqrt{2}}{9} + \frac{2\sqrt{2}}{9} = 0 \qquad \|\mathbf{v}_{3}\| = \sqrt{\mathbf{v}_{3} \cdot \mathbf{v}_{3}} = \sqrt{\frac{4}{9} + \frac{4}{9} + \frac{1}{9}} = 1$$

Thus *S* is an orthonormal set

Inner Product Spaces

- Example 10: (An orthonormal basis for P_3) with the inner product $\langle p, q \rangle = a_0 b_0 + a_1 b_1 + a_2 b_2 + a_3 b_3$ the standard basis $B = \{1, x, x^2, x^3\}$ is orthonormal
- Theorem 4: (Orthogonal sets are linearly independent)
 If S = {v₁, v₂, ..., v_n} is an orthogonal set of nonzero vectors in an inner product space V, then S is linearly independent.
- Theorem 5: (Coordinates relative to an orthonormal basis)
 If S = {v₁, v₂, ..., v_n} is an orthogonal/orthonormal basis for an inner product space V, and if u is any vector in V, then

$$\boldsymbol{u} = \frac{\langle \boldsymbol{u}, \boldsymbol{v}_1 \rangle}{\left\| \boldsymbol{v}_1 \right\|^2} \boldsymbol{v}_1 + \frac{\langle \boldsymbol{u}, \boldsymbol{v}_2 \rangle}{\left\| \boldsymbol{v}_2 \right\|^2} \boldsymbol{v}_2 + \dots + \frac{\langle \boldsymbol{u}, \boldsymbol{v}_n \rangle}{\left\| \boldsymbol{v}_n \right\|^2} \boldsymbol{v}_n \qquad S \text{ orthogonal}$$

Note: If S = {v₁, v₂, ..., v_n} is an orthogonal/orthonormal basis for an inner product space V and w ∈ V, then the corresponding coordinate matrix of w relative to B is

$$\begin{bmatrix} \boldsymbol{u} \end{bmatrix}_{S} = \begin{pmatrix} \langle \boldsymbol{u}, \boldsymbol{v}_{1} \rangle \\ \| \boldsymbol{v}_{1} \|^{2} \end{pmatrix}, \frac{\langle \boldsymbol{u}, \boldsymbol{v}_{2} \rangle}{\| \boldsymbol{v}_{2} \|^{2}}, \cdots, \frac{\langle \boldsymbol{u}, \boldsymbol{v}_{n} \rangle}{\| \boldsymbol{v}_{n} \|^{2}} \end{pmatrix}^{T} \qquad \begin{bmatrix} \boldsymbol{w} \end{bmatrix}_{S} = \begin{pmatrix} \langle \boldsymbol{u}, \boldsymbol{v}_{1} \rangle, \langle \boldsymbol{u}, \boldsymbol{v}_{2} \rangle, \cdots, \langle \boldsymbol{u}, \boldsymbol{v}_{n} \rangle \end{pmatrix}^{T} \\ S \text{ orthogonal} \qquad S$$

• Example 11: (Representing vectors relative to an orthonormal basis) Find the coordinates of vector w = (5, -5, 2) relative to the following orthonormal basis for R^3 $S = \{(\frac{3}{5}, \frac{4}{5}, 0), (-\frac{4}{5}, \frac{3}{5}, 0), (0, 0, 1)\}$

Orthogonal Projections

Theorem 6: (Projection Theorem)

If *W* is a finite-dimensional subspace of an inner product space *V*, then every vector *u* in *V* can be expressed in exactly one way as $u = w_1 + w_2$, where w_1 is in *W* and w_2 is in W^{\perp} .

$$\boldsymbol{u} = \operatorname{proj}_{W} \boldsymbol{u} + \operatorname{proj}_{W^{\perp}} \boldsymbol{u} = \operatorname{proj}_{W} \boldsymbol{u} + (\boldsymbol{u} - \operatorname{proj}_{W} \boldsymbol{u})$$

Theorem 7: (formulas for calculating orthogonal projection)
 Let W be a finite-dimensional subspace of an inner product space V. If S = {v₁, v₂, ..., v_r} is an orthogonal/orthonormal basis for W, then

$$\operatorname{proj}_{W} \boldsymbol{u} = \frac{\langle \boldsymbol{u}, \boldsymbol{v}_{1} \rangle}{\|\boldsymbol{v}_{1}\|^{2}} \boldsymbol{v}_{1} + \frac{\langle \boldsymbol{u}, \boldsymbol{v}_{2} \rangle}{\|\boldsymbol{v}_{2}\|^{2}} \boldsymbol{v}_{2} + \dots + \frac{\langle \boldsymbol{u}, \boldsymbol{v}_{r} \rangle}{\|\boldsymbol{v}_{r}\|^{2}} \boldsymbol{v}_{r} \qquad S \text{ orthogonal}$$

$$\operatorname{proj}_{W} \boldsymbol{u} = \langle \boldsymbol{u}, \boldsymbol{v}_{1} \rangle \boldsymbol{v}_{1} + \langle \boldsymbol{u}, \boldsymbol{v}_{2} \rangle \boldsymbol{v}_{2} + \dots + \langle \boldsymbol{u}, \boldsymbol{v}_{r} \rangle \boldsymbol{v}_{r} \qquad S \text{ orthonormal}$$

The Gram-Schmidt Process

Theorem 8: (Projection Theorem)

Every nonzero finite-dimensional inner product space has an orthonormal basis.

Inner Product Spaces

By normalizing these basis vectors we can obtain an orthonormal basis.

 Theorem 9: (Gram-Schmidt orthonormalization process) (1) Let $B = \{u_1, u_2, ..., u_n\}$ is a basis for an inner product space V (2) Let $B' = \{v_1, v_2, ..., v_n\}$, where $v_1 = u_1$ $oldsymbol{v}_2 = oldsymbol{u}_2 - rac{\langle oldsymbol{u}_2, oldsymbol{v}_1
angle}{\langle oldsymbol{v}_1, oldsymbol{v}_1
angle} oldsymbol{v}_1$ $oldsymbol{v}_3 = oldsymbol{u}_3 - rac{\langleoldsymbol{u}_3, oldsymbol{v}_1
angle}{\langleoldsymbol{v}_1, oldsymbol{v}_1
angle} oldsymbol{v}_1 - rac{\langleoldsymbol{u}_3, oldsymbol{v}_2
angle}{\langleoldsymbol{v}_2, oldsymbol{v}_2
angle} oldsymbol{v}_2$ $\boldsymbol{v}_n = \boldsymbol{u}_n - \sum_{i=1}^{n-1} \frac{\langle \boldsymbol{u}_n, \boldsymbol{v}_i \rangle}{\langle \boldsymbol{v}_i, \boldsymbol{v}_i \rangle} \boldsymbol{v}_i$ Then B' is an orthogonal basis for V

(3) Let
$$w_i = \frac{v_i}{\|v_i\|}$$

Then $B'' = \{w_1, w_2, ..., w_n\}$ is an orthonormal basis for V Also, span $\{u_1, u_2, ..., u_n\} = \text{span}\{w_1, w_2, ..., w_n\}$ for k = 1, 2, ..., n

Example 12: (Applying the Gram-Schmidt orthonormalization process)
 Apply the Gram-Schmidt orthonormalization process to the basis *B* for *R*²

$$B = \{ \mathbf{u}_1 = (1, 1), \, \mathbf{u}_2 = (0, 1) \}$$

$$\begin{split} & \pmb{v}_1 = \pmb{u}_1 = (1, 1) \\ & \pmb{v}_2 = \pmb{u}_2 - \frac{\langle \pmb{u}_2, \pmb{v}_1 \rangle}{\langle \pmb{v}_1, \pmb{v}_1 \rangle} \pmb{v}_1 = (0, 1) - \frac{1}{2}(1, 1) = (-\frac{1}{2}, \frac{1}{2}) \\ & \text{The set } B' = \{\pmb{v}_1, \pmb{v}_2\} \text{ is an orthogonal basis for } R^2 \end{split}$$

$$w_{1} = \frac{v_{1}}{\|v_{1}\|} = \frac{1}{\sqrt{2}}(1, 1) = (\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2})$$

$$w_{2} = \frac{v_{2}}{\|v_{2}\|} = \frac{1}{1/\sqrt{2}}(-\frac{1}{2}, \frac{1}{2}) = (-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2})$$
The set $B'' = \{w_{1}, w_{2}\}$ is an orthonormal basis for R^{2}

$$(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2})$$

$$(\frac{-\sqrt{2}}{2}, \frac{\sqrt{2}}{2})$$

$$(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2})$$

Example 13: (Applying the Gram-Schmidt orthonormalization process)
 Apply the Gram-Schmidt orthonormalization process to the basis *B* for *R*³

$$B = \{ \mathbf{v}_1 = (1, 1, 0), \mathbf{v}_2 = (1, 2, 0), \mathbf{v}_3 = (0, 1, 2) \}$$

$$\begin{split} & \mathbf{v}_{1} = \mathbf{u}_{1} = (1, 1, 0) \\ & \mathbf{v}_{2} = \mathbf{u}_{2} - \frac{\langle \mathbf{u}_{2}, \mathbf{v}_{1} \rangle}{\langle \mathbf{v}_{1}, \mathbf{v}_{1} \rangle} \mathbf{v}_{1} = (1, 2, 0) - \frac{3}{2} (1, 1, 0) = (-\frac{1}{2}, \frac{1}{2}, 0) \\ & \mathbf{v}_{3} = \mathbf{u}_{3} - \frac{\langle \mathbf{u}_{3}, \mathbf{v}_{1} \rangle}{\langle \mathbf{v}_{1}, \mathbf{v}_{1} \rangle} \mathbf{v}_{1} - \frac{\langle \mathbf{u}_{3}, \mathbf{v}_{2} \rangle}{\langle \mathbf{v}_{2}, \mathbf{v}_{2} \rangle} \mathbf{v}_{2} = (1, 2, 0) - \frac{1}{2} (1, 1, 0) - \frac{1/2}{1/2} (-\frac{1}{2}, \frac{1}{2}, 0) = (0, 0, 2) \\ & \text{The set } B' = \{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\} \text{ is an orthogonal basis for } R^{3} \\ & \mathbf{w}_{1} = \frac{\mathbf{v}_{1}}{\|\mathbf{v}_{1}\|} = \frac{1}{\sqrt{2}} (1, 1, 0) = (\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0) \end{split}$$

$$\begin{split} \boldsymbol{w}_2 &= \frac{\boldsymbol{v}_2}{\|\boldsymbol{v}_2\|} = \frac{1}{1/\sqrt{2}} \left(-\frac{1}{2}, \frac{1}{2}, 0\right) = \left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0\right) \\ \boldsymbol{w}_3 &= \frac{\boldsymbol{v}_3}{\|\boldsymbol{v}_3\|} = \frac{1}{2} \left(0, 0, 2\right) = (0, 0, 1) \end{split}$$

The set $B'' = \{w_1, w_2, w_3\}$ is an orthonormal basis for R^3

3. Mathematical Models and Least Square Analysis Best Approximation; Least Squares

Least Squares Problem: Given Ax = b of m equations in n unknowns, find x in Rⁿ that minimizes ||b−Ax|| with respect to the Euclidean inner product on R^m. We call x, if it exists, a least squares solution of Ax = b, b − Ax the least squares error vector, and ||b−Ax|| the least squares error.

$$\mathbf{b} - A\mathbf{x} = \begin{bmatrix} e_1 \\ e_1 \\ \vdots \\ e_m \end{bmatrix} \Rightarrow \|\mathbf{b} - A\mathbf{x}\|^2 = e_1^2 + e_2^2 + \dots + e_m^2$$

• Note: For every vector x in \mathbb{R}^n , the product Ax is in the column space of A because it is a linear combination of the column vectors of A. Find a least squares solution of Ax = b is equivalent to find a vecto $rA\hat{x}$ in the col(A) that is closest to b (it minimizes the length of the vector b - Ax) $\Rightarrow A\hat{x} = \operatorname{proj}_{col(A)}b$.

- Theorem 10: (Best Approximation Theorem)
 - If *W* is a finite-dimensional subspace of an inner product space *V*, and if *b* is a vector in *V*, then $\operatorname{proj}_W \boldsymbol{b}$ is the best approximation to *b* from *W* in the sense that $\|\boldsymbol{b} \operatorname{proj}_W \boldsymbol{b}\| < \|\boldsymbol{b} \boldsymbol{w}\|$ for every vector *w* in *W* that is different from $\operatorname{proj}_W \boldsymbol{b}$.
- If V = Rⁿ and W = col(A), then the best approximation to b from col(A) is proj_{col(A)}b.
- Finding Least Squares Solutions: A^TAx = A^Tb
 This is called the normal equations associated with Ax = b.
- Example 14: (Finding Least Squares Solutions)
 Find the Least Squares Solution, the least squares error vector, and the least squares error of the linear system:

x

_ *Y*

3x + 2y = 1

-2x + 4y = 3

$$A^{T}A = \begin{bmatrix} 1 & 3 & -2 \\ -1 & 2 & 4 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 3 & 2 \\ -2 & 4 \end{bmatrix} = \begin{bmatrix} 14 & -3 \\ -3 & 21 \end{bmatrix}$$
$$A^{T}b = \begin{bmatrix} 1 & 3 & -2 \\ -1 & 2 & 4 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 10 \end{bmatrix}$$
$$A^{T}Ax = A^{T}b \Rightarrow \begin{bmatrix} 14 & -3 \\ -3 & 21 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 10 \end{bmatrix} \Rightarrow \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 17/95 \\ 143/285 \end{bmatrix}$$
$$b - Ax = \begin{bmatrix} 1232/285 \\ -154/285 \\ 77/57 \end{bmatrix}, \text{ and } \|b - Ax\| \approx 4.556$$

- Theorem 11: (a unique least squares solution)
 - If *A* is an $m \ge n$ matrix with linearly independent column vectors, then for every $m \ge 1$ matrix *b*, the linear system A x = b has a unique least squares solution. This solution is given by: $x = (A^T A)^{-1} A^T b$.

Moreover, if *W* is the column space of *A*, then the orthogonal projection of *b* on *W* is: $\operatorname{proj}_W \boldsymbol{b} = A\boldsymbol{x} = A(A^TA)^{-1}A^T\boldsymbol{b}$.

Mathematical Modeling Using Least Squares

• Fitting a Curve to Data

A common problem in experimental work is to find a mathematical relationship y = f(x) between two variables x and y by "fitting" a curve to points in the plane $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$.

Least Squares Fit of a Straight Line y = a + bx

Inner Product Spaces

$$M\boldsymbol{v} = \boldsymbol{y} \quad \Rightarrow \quad M^T M \boldsymbol{v} = M^T \boldsymbol{y} \quad \Rightarrow \quad \boldsymbol{v}^* = \begin{bmatrix} \boldsymbol{a}^* \\ \boldsymbol{b}^* \end{bmatrix} = (M^T M)^{-1} M^T \boldsymbol{y}$$

 $y = a^{*} + b^{*}x \text{ Least squares line of best fit or the regression line}$ It minimizes $||y - Mv||^{2} = [y_{1} - (a + bx_{1})]^{2} + [y_{2} - (a + bx_{2})]^{2} + \dots + [y_{n} - (a + bx_{n})]^{2}$ $d_{1} = |y_{1} - (a + bx_{1})|, d_{2} = |y_{2} - (a + bx_{2})|, \dots, d_{n} = |y_{n} - (a + bx_{n})|$ residuals

Example 15: (Least Squares Straight Line Fit)

Find the least squares straight line fit to the points (2, 1), (5, 2), (7, 3), and (8, 3)

$$M^{T}M = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 5 & 7 & 8 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix} = \begin{bmatrix} 4 & 22 \\ 22 & 142 \end{bmatrix}$$

$$y = \frac{2}{7} + \frac{5}{14}x$$

$$M^{T}y = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 5 & 7 & 8 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix} = \begin{bmatrix} 9 \\ 57 \end{bmatrix}$$

$$v^{*} = (M^{T}M)^{-1}M^{T}y = \begin{bmatrix} 4 & 22 \\ 22 & 142 \end{bmatrix}^{-1} \begin{bmatrix} 9 \\ 57 \end{bmatrix} = \frac{1}{84} \begin{bmatrix} 142 & -22 \\ -22 & 4 \end{bmatrix} \begin{bmatrix} 9 \\ 57 \end{bmatrix} = \begin{bmatrix} \frac{2}{7} \\ \frac{5}{14} \end{bmatrix}$$

Inner Product Spaces

Example 16: (Fitting a Quadratic Curve to Data)

Newton's second law of motion $s = s_0 + v_0 t + \frac{1}{2}gt^2$ Laboratory experiment

Time t (sec)	.1	.2	.3	.4	.5
Displacement s (ft)	-0.18	0.31	1.03	2.48	3.73

Approximate g

Let $s = a_0 + a_1 t + a_2 t^2$ (0.1,-0.18), (0.2, 0.31), (0.3, 1.03), (0.4, 2.48), (0.5, 3.73)

$$M = \begin{bmatrix} 1 & t_1 & t_1^2 \\ 1 & t_2 & t_2^2 \\ 1 & t_3 & t_3^2 \\ 1 & t_4 & t_4^2 \\ 1 & t_5 & t_5^2 \end{bmatrix} = \begin{bmatrix} 1 & 0.1 & 0.01 \\ 1 & 0.2 & 0.04 \\ 1 & 0.3 & 0.09 \\ 1 & 0.4 & 0.16 \\ 1 & 0.5 & 0.25 \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} s_1 \\ s_2 \\ s_3 \\ s_4 \\ s_5 \end{bmatrix} = \begin{bmatrix} -0.18 \\ 0.31 \\ 1.03 \\ 2.48 \\ 3.73 \end{bmatrix}$$
$$\mathbf{y}^* = \begin{pmatrix} a_0^* \\ a_1^* \\ a_2^* \end{pmatrix} = (M^T M)^{-1} M^T \mathbf{y} = \begin{pmatrix} -0.4 \\ 0.35 \\ 16.1 \end{pmatrix}$$
$$g = 2a_2^* = 2(16.1) = 32.2 \text{ feet}/s^2$$
$$s_0 = a_0^* = -0.4 \text{ feet} \quad v_0 = a_1^* = 0.35 \text{ feet}/s$$

Inner Product Spaces

https://manara.edu.sy/

2024-2025