

CECC122: Linear Algebra and Matrix Theory Lecture Notes 7: Linear Transformations

Ramez Koudsieh, Ph.D.

Faculty of Engineering Department of Informatics Manara University

Chapter 6

Linear Transformations

- 1. Introduction to Linear Transformations
- 2. The Kernel and Range of a Linear Transformation
- 3. Compositions and Inverse Transformations
- 5. Geometry of Matrix Operators

1. Introduction to Linear Transformations **Images And Preimages of Functions:**

• Function T that maps a vector space V into a vector space W. V: Domain

T: V Mapping W, V, W: vector spaces

- If v is in V and w is in W such that: T(v) = w, Then w is called the image of v under T.
- The range of T: The set of all images of vectors in V.
- The preimage of w: The set of all v in V such that T(v) = w.
- Example 1: (A function from R^2 into R^2) $T: V \to W$ $T: R^2 \to R^2, v = (v_1, v_2) \in R^2$ $T(v_1, v_2) = (v_1 - v_2, v_1 + 2v_2)$

Range

W: Codomain

(a) Find the image of v = (-1, 2) (b) Find the preimage of w = (-1, 11)

(a) $\mathbf{v} = (-1, 2) \Rightarrow T(\mathbf{v}) = T(-1, 2) = (-1 - 2, -1 + 2(2)) = (-3, 3)$ (b) $T(\mathbf{v}) = \mathbf{w} = (-1, 11) \Rightarrow T(v_1, v_2) = (v_1 - v_2, v_1 + 2v_2) = (-1, 11)$

 $\Rightarrow \begin{cases} v_1 - v_2 = -1 \\ v_1 + 2v_2 = 11 \end{cases} \Rightarrow v_1 = 3, v_2 = 4 \qquad \text{Thus } \{(3, 4)\} \text{ is the preimage} \\ \text{of } w = (-1, 11) \end{cases}$

Definition: If T: V → W is a mapping from a vector space V to a vector space W, then T is called a linear transformation (LT) from V to W if the following two properties hold for all vectors u and v in V and for all scalars c:

(1)
$$T(u+v) = T(u) + T(v)$$
[Additivity property](2) $T(cu) = cT(u)$ [Homogeneity property]

When V = W, the linear transformation T is called a linear operator on V.

- Example 2: (Verifying a linear transformation T from R^2 into R^2) $T: R^2 \to R^2, v = (v_1, v_2) \in R^2$ $T(v_1, v_2) = (v_1 - v_2, v_1 + 2v_2)$ $\boldsymbol{u} = (u_1, u_2), \ \boldsymbol{v} = (v_1, v_2)$ vectors in R^2, c : any real $T(\boldsymbol{u} + \boldsymbol{v}) = T(u_1 + v_1, u_2 + v_2)$ $= ((u_1 + v_1) - (u_2 + v_2), (u_1 + v_1) + 2(u_2 + v_2))$ $= ((u_1 - u_2) + (v_1 - v_2), (u_1 + 2u_2) + (v_1 + 2v_2))$ $= (u_1 - u_2, u_1 + 2u_2) + (v_1 - v_2, v_1 + 2v_2) = T(u) + T(v)$ $T(c\mathbf{u}) = T(cu_1, cu_2) = (cu_1 - cu_2, cu_1 + 2cu_2) = c(u_1 - u_2, u_1 + 2u_2) = cT(\mathbf{u})$ Therefore, T is a linear transformation.
- Example 3: (A Linear Transformation from P_n to P_{n-1} , $n \ge 1$) $T: P_n \to P_{n-1}: T(p) = T(p(x)) = p'(x)$ derivative

Example 5: (Functions that are not linear transformations) (a) $f(x) = \sin x$ $\sin(x_1 + x_2) \neq \sin(x_1) + \sin(x_2)$ (b) $f(x) = x^2$ $(x_1 + x_2)^2 \neq x_1^2 + x_2^2$ (c) f(x) = x + 1 $f(x_1 + x_2) = x_1 + x_2 + 1$ $f(x_1) + f(x_2) = (x_1 + 1) + (x_2 + 1) = x_1 + x_2 + 2$ $f(x_1 + x_2) \neq f(x_1) + f(x_2)$ (d) $T(\mathbf{v}) = \|\mathbf{v}\|$ $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\| \Rightarrow T(\mathbf{u} + \mathbf{v}) \ne T(\mathbf{u}) + T(\mathbf{v})$

حافعة

- Zero transformation: $T: V \to W$ $T(v) = 0, \forall v \in V$
- Identity transformation: $T: V \rightarrow V$ $T(v) = v, \forall v \in V$
- Theorem 1: (Properties of linear transformations) $T: V \rightarrow W, \quad u, v \in V$

(1) $T(\mathbf{0}) = \mathbf{0}$ (2) $T(-\mathbf{v}) = -T(\mathbf{v})$ (3) $T(\mathbf{u} - \mathbf{v}) = T(\mathbf{u}) - T(\mathbf{v})$ (4) If $\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n$ then $T(\mathbf{v}) = T(c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n) = c_1 T(\mathbf{v}_1) + c_2 T(\mathbf{v}_2) + \dots + c_n T(\mathbf{v}_n)$

Example 6: (Functions that are not linear transformations)
 Let T: R³ → R³ be a linear transformation such that
 T(1, 0, 0) = (2, -1, 4), T(0, 1, 0) = (1, 5, -2), T(0, 0, 1) = (0, 3, 1)

 Find T(2, 3, -2)

$$\begin{aligned} & \left[\begin{array}{c} 2, 3, -2 \right] = 2(1, 0, 0) + 3(0, 1, 0) - 2(0, 0, 1) \\ T(2, 3, -2) &= 2T(1, 0, 0) + 3T(0, 1, 0) - 2T(0, 0, 1) \\ &= 2(2, -1, 4) + 3(1, 5, -2) - 2T(0, 3, 1) = (7, 7, 0) \end{aligned} \\ \\ & \text{Example 7: (A linear transformation defined by a matrix)} \\ & \text{The function } T: R^2 \to R^3 \text{ is defined as } T(v) = Av = \begin{bmatrix} 3 & 0 \\ 2 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \\ & (a) \text{ Find } T(v), \text{ where } v = (2, -1) \end{aligned} \\ & (b) \text{ Show that } T \text{ is a linear transformation from } R^2 \text{ into } R^3 \\ & R^2 \text{ vector} \qquad R^3 \text{ vector} \\ & (a) v = (2, -1) \end{aligned} \\ & T(v) = Av = \begin{bmatrix} 3 & 0 \\ 2 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \\ 0 \end{bmatrix} \Rightarrow T(2, -1) = (6, 3, 0) \end{aligned}$$

(b)
$$T(u + v) = A(u + v) = Au + Av = T(u) + T(v)$$
 (vector addition)
 $T(cu) = A(cu) = c(Au) = cT(u)$ (scalar multiplication)

- Theorem 2: (The linear transformation given by a matrix)
 Let A be an mxn matrix. The function T defined by T(v) = Av is a linear transformation from Rⁿ into R^m.
- Example 8: (Rotation in the plane) Show that the LT $T: R^2 \rightarrow R^2$ given by the matrix $A = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$

has the property that it rotates every vector in R^2 counterclockwise about the origin through the angle θ .

 $v = (x, y) = (r \cos \alpha, r \sin \alpha)$ (polar coordinates)

$$T(v) = Av = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} r\cos\alpha \\ r\sin\alpha \end{bmatrix}$$
$$= \begin{bmatrix} r\cos\theta\cos\alpha - r\sin\theta\sin\alpha \\ r\sin\theta\cos\alpha + r\cos\theta\sin\alpha \end{bmatrix}$$
$$= \begin{bmatrix} r\cos(\theta + \alpha) \\ r\sin(\theta + \alpha) \end{bmatrix}$$

Thus, T(v) is the vector that results from rotating the vector v counterclockwise through the angle θ .

• Example 9: (A projection in R^3) The LT $T: R^3 \rightarrow R^3$ is given by the matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ is called a projection in R^3 .

Projection onto xy-plane

2. The Kernel and Range of a Linear Transformation

- Definition: Let T: V→ W be a Linear transformation. Then the set of all vectors v in V that satisfy T(v) = 0 is called the kernel of T and is denoted by ker(T). ker(T) = {v | T(v) = 0, ∀v ∈ V}
- Example 10: (The kernel of the zero and identity transformations)
 (a) T(v) = 0 (the zero transformation) ker(T) = V
 (b) T(v) = v (the identity transformation) ker(T) = {0}
- Example 11: (Finding the kernel of a LT) T(v) = (x, y, 0) $T: R^3 \rightarrow R^3$ $ker(T) = \{(0, 0, z) \mid z \text{ is a real number}\}$

Example 12: (Finding the kernel of a linear transformation)

$$T(\boldsymbol{x}) = A\boldsymbol{x} = \begin{bmatrix} 1 & -1 & -2 \\ -1 & 2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \quad (T: R^3 \to R^2)$$

$$\ker(T) = \{(x_1, x_2, x_3) | T(x_1, x_2, x_3) = (0, 0), \ \boldsymbol{x} = (x_1, x_2, x_3) \in R^3\}$$

$$T(x_1, x_2, x_3) = (0, 0) \Rightarrow \begin{bmatrix} 1 & -1 & -2 \\ -1 & 2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & -2 & 0 \\ -1 & 2 & 3 & 0 \end{bmatrix} \xrightarrow{\text{Gauss-J. Elimination}} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} t \\ -t \\ t \end{bmatrix} = t \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$

$$\Rightarrow \ker(T) = \{t(1, -1, 1) | t \text{ is a real number}\} = \operatorname{span}\{(1, -1, 1)$$

- Theorem 3: (The kernel is a subspace of V) The kernel of a linear transformation $T: V \rightarrow W$ is a subspace of the domain V.
- Definition: Let $T: V \to W$ be a Linear transformation. Then the set of all vectors w in W that are images of vectors in V is called the range of T and is denoted by range(T) or R(T). range(T) = { $T(v) | \forall v \in V$ } Domain Kernel
- Theorem 4: (The range is a subspace of W)
 The range of a LT T: V → W is a subspace of the W.
- Rank of a linear transformation $T: V \rightarrow W$: rank(T) = the dimension of the range of T
- Nullity of a linear transformation $T: V \rightarrow W$: nullity(T) = the dimension of the kernel of T

- Note: Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be the LT given by T(x) = Ax. Then rank(T) = rank(A), nullity(T) = nullity(A)
- Theorem 5: (Sum of rank and nullity)

Let T: $V \rightarrow W$ be a LT from an *n*-dimensional vector space V into a vector space *W*. Then:

 $\operatorname{rank}(T) + \operatorname{nullity}(T) = n$ $\dim(\text{range of } T) + \dim(\text{kernel of } T) = \dim(\text{domain of } T)$

Example 13: (Finding rank and nullity of a linear transformation) Find the rank and nullity of the LT $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $A = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ $\operatorname{rank}(T) = \operatorname{rank}(A) = 2$

nullity(T) = dim(domain of T) – rank(T) = 3 – 2 = 1

- Example 14: (Finding rank and nullity of a linear transformation) Let $T: R^5 \rightarrow R^7$ be a linear transformation
 - (a) Find the dimension of the kernel of T if the dimension of the range is 2 (b) Find the rank of T if the nullity of T is 4
 - (c) Find the rank of T if ker $(T) = \{0\}$

(a) dim(domain of T) = 5 \Rightarrow dim(ker of T) = n - dim(range of T) = 5 - 2 = 3

(b) rank(T) = n - nullity(T) = 5 - 4 = 1 (c) rank(T) = n - nullity(T) = 5 - 0 = 5

- 3. Compositions and Inverse Transformations
- Definition: A function T: V → W is one-to-one when the preimage of every w in the range consists of a single vector.

T is one-to-one if and only if, for all *u* and *v* in *V*, T(u) = T(v) implies u = v.

- Definition: A function $T: V \rightarrow W$ is onto when every element in W has a preimage in V. (T is onto Wwhen W is equal to the range of T).
- Theorem 6: (One-to-one LT) Let $T: V \rightarrow W$ be a LT. Then T is one-to-one iff ker $(T) = \{0\}$.

- Example 15: (One-to-one and not one-to-one linear transformation)

 (a) The linear transformation T: M_{3x2} → M_{2x3} given by T(A) = A^T is one-to-one because its kernel consists of only the mxn zero matrix.
 (b) The zero transformation T: R³ → R³ is not one-to-one because its kernel is
 - all of R^3 .

Linear Transformations

- Example 16: (One-to-one and onto linear transformation) The LT $T: P_3 \rightarrow R^4$ given by $T(a + bx + cx^2 + dx^3) = (a, b, c, d)$.
- Example 17: (One-to-one and not onto linear transformation) $T: P_n \rightarrow P_{n+1}: T(p) = T(p(x)) = xp(x)$
- Theorem 7: (Onto linear transformation) Let $T \cdot V \rightarrow W$ be a linear transformation with

Let $T: V \rightarrow W$ be a linear transformation, where W is finite dimensional. Then T is onto iff the rank of T is equal to the dimension of W.

Theorem 8: (One-to-one and onto linear transformation)
 Let T: V → W be a linear transformation, with vector space V and W both of dimension n. Then T is one-to-one iff it is onto.

Example 18: (One-to-one and not one-to-one linear transformation)
 Let T: Rⁿ → R^m be a LT given by T(x) = Ax. Find the nullity and rank of T to determine whether T is one-to-one, onto, or neither.

$$(a) A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}, (b) A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}, (c) A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & -1 \end{bmatrix}, (d) A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$T: \mathbb{R}^n \to \mathbb{R}^m$	dim(domain of T)	$\operatorname{rank}(T)$	nullity(T)	one-to-one	onto
(a) $T: \mathbb{R}^3 \to \mathbb{R}$	³ 3	3	0	Yes	Yes
(b) $T: \mathbb{R}^2 \to \mathbb{R}$	³ 2	2	0	Yes	No
(c) $T: \mathbb{R}^3 \to \mathbb{R}^2$	² 3	2	1	No	Yes
(d) $T: \mathbb{R}^3 \to \mathbb{R}^3$	³ 3	2	1	No	No

Definition: If $T_1: U \to V$ and $T_2: V \to W$ are linear transformations, then the composition of T_2 with T_1 , denoted by $T_2 \circ T_1$ is the function defined by the formula $(T_2 \circ T_1)(u) = T_2(T_1(u))$, where u is a vector in U.

- Theorem 9: (Composition of linear transformations) If $T_1: U \to V$ and $T_2: V \to W$ are linear transformations, then $(T_2 \circ T_1): U \to W$ is also a linear transformations.
- Example 19: (Composition of linear transformations)
 Let T₁ and T₂ be linear transformations from R³ into R³ such that:

 $T_{1}(x,y,z) = (2x + y, 0, x + z), \quad T_{2}(x,y,z) = (x - y, z, y)$ Find the compositions $T = T_{2} \circ T_{1}$ and $T' = T_{1} \circ T_{2}$ $(T_{2} \circ T_{1})(x, y, z) = T_{2}(T_{1}(x, y, z)) = T_{2}(2x + y, 0, x + z) = (2x + y, x + z, 0)$ $(T_{1} \circ T_{2})(x, y, z) = T_{1}(T_{2}(x, y, z)) = T_{1}(x - y, z, y) = (2x - 2y + z, 0, x)$

- Note: $T_2 \circ T_1 \neq T_1 \circ T_2$
- Composition with the Identity Operator

If $T: V \to V$ is any linear operator, and if $I: V \to V$ is the identity, then for all vectors v in V, we have

$$(T \circ I)(v) = T(I(v)) = T(v)$$

 $(I \circ T)(v) = I(T(v)) = T(v)$

$$T \circ I = T$$
 and $I \circ T = T$

- Note: Let $T_1: \mathbb{R}^n \to \mathbb{R}^m$ and $T_2: \mathbb{R}^m \to \mathbb{R}^p$ be LT where $T_1(u) = A_1 u$ and $T_2(v) = A_2 v$, then
 - (1) The composition $T: \mathbb{R}^n \to \mathbb{R}^p$, defined by $T(v) = T_2(T_1(v))$, is a LT. (2) The matrix A for T is given the matrix product $A = A_2A_1$, where T(u) = Au
- Example 20: (Composition of linear transformations)

Let T_1 and T_2 be linear transformations from R^3 into R^3 such that: $T_1(x,y,z) = (2x + y, 0, x + z), \quad T_2(x,y,z) = (x - y, z, y)$

Find the composition $T = T_2 \circ T_1$

$$A_{1} = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix}, A_{2} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \Rightarrow A = A_{2}A_{1} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$T(x, y, z) = A \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = (2x + y, x + z, 0)$$

Definition: If $T: V \to W$ is a linear transformations, then T is invertible if there is a transformation T^{-1} such that: $T^{-1} \circ T = I_V$ and $T \circ T^{-1} = I_W$. We call T^{-1} the inverse of T. $T^{-1}(T(u)) = u, \forall u \in U$ $T(T^{-1}(w)) = w, \forall w \in R(T)$

- Notes:
 - (1) The inverse transformation T^{-1} : $R(T) \rightarrow V$ exists iff T is one-to-one.
 - (2) If T: $V \to W$ is a linear transformations, then T^{-1} : $R(T) \to V$ is also a LT.

• Example 21: (An Inverse Transformation) $T: P_n \rightarrow P_{n+1}: T(p) = T(p(x)) = xp(x) = c_0 x + c_1 x^2 + \ldots + c_n x^{n+1}$

is a one-to-one LT \Rightarrow $T^{-1}(c_0x + c_1x^2 + ... + c_nx^{n+1}) = c_0 + c_1x + ... + c_nx^n$

- Note: Consider T: Rⁿ → Rⁿ where T(u) = Au
 (1) T is one-to-one if and only if A is invertible.
 (2) T⁻¹ exists if and only if A is invertible. The inverse transformation is the matrix transformation given by A⁻¹.
- Example 22: (Finding the inverse of a linear transformation) The linear transformations $T: R^3 \rightarrow R^3$ defined by:

 $T(x_1, x_2, x_3) = (2x_1 + 3x_2 + x_3, 3x_1 + 3x_2 + x_3, 2x_1 + 4x_2 + x_3)$

Show that T is invertible, and find its inverse.

- 4. Geometry of Matrix Operators
- Example 23: (Transformation of the Unit Square)

Sketch the image of the unit square under multiplication by the invertible matrix: $A = \begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix}$

(1, 1)

(1, 0)

(1, 3)

(1, 1)

Reflections, Rotations, and Projections

Expansions and Compressions

Shears

- Example 24: (Transformation of the Unit Square)
 - (a) Find the standard matrix for the operator on R^2 that first shears by a factor of 2 in the *x*-direction and then reflects the result about the line y = x. Sketch the image of the unit square under this operator.
 - (b) Find the standard matrix for the operator on R^2 that first reflects about y = x and then shears by a factor of 2 in the *x*-direction. Sketch the image of the unit square under this operator. Conclude.

(a) The matrix for the shear is $A_1 = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ and for the reflection is $A_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

$$A_2 A_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix}$$

Linear Transformations

https://manara.edu.sy/

2024-2025

30/39

Dilations and Contractions

• Note: The multiplication by A causes a compression or expansion of the unit square by a factor of k_1 in the *x*-direction followed by an expansion or compression of the unit square by a factor of k_2 in the *y*-direction.

Reflection About the Origin:

Multiplication by the matrix $A = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ has the geometric effect

of reflecting the unit square about the origin.

$$A = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

The same result can be obtained by first reflecting the unit square about the *x*-axis and then reflecting that result about the *y*-axis.

• Reflection About the Line y = -x

$$A = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$$

- Theorem 10: (Elementary matrix transformations)
 - If E is an elementary matrix, then $T_E: \mathbb{R}^2 \to \mathbb{R}^2$ is one of the following:
 - (a) A shear along a coordinate axis.
 - (c) A compression along a coordinate axis.
 - (d) An expansion along a coordinate axis.
 - (e) A reflection about a coordinate axis.
 - (*f*) A compression or expansion along a coordinate axis followed by a reflection about a coordinate axis.
- Theorem 11: (Invertible matrix transformations)

If $T_A: R^2 \to R^2$ is multiplication by an invertible matrix A, then the geometric effect of T_A is the same as an appropriate succession of shears, compressions, expansions, and reflections.

(b) A reflection about y = x.

Example 25: (Decomposing a Matrix Operator)

In Example 23 we illustrated the effect on the unit square of multiplication by:

 $A = \begin{vmatrix} 0 & 1 \\ 2 & 1 \end{vmatrix}$

Express this matrix as a product of elementary matrices, and then describe the effect of multiplication by the matrix A in terms of shears, compressions, expansions, and reflections.

$$A = \begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix} \xrightarrow{r_{12}} \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} \xrightarrow{r_1^{(1/2)}} \begin{bmatrix} 1 & \frac{1}{2} \\ 0 & 1 \end{bmatrix} \xrightarrow{r_{21}^{(-1/2)}} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$
$$A = \begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix} = E_1^{-1} E_2^{-1} E_3^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & \frac{1}{2} \\ 0 & 1 \end{bmatrix}$$

Reading from right to left we can now see that the geometric effect of multiplying by A is equivalent to successively:

- 1. shearing by a factor of $\frac{1}{2}$ in the *x*-direction;
- 2. expanding by a factor of 2 in the *x*-direction;
- 3. reflecting about the line y = x.

Linear Transformations

https://manara.edu.sy/

2024-2025

36/39

Rotation about the *z*-axis

60°.

Linear Transformations

https://manara.edu.sy/

·00°

2024-2025

Linear Transformations