

Relations

	Solution:
Let $C = \{2, 3, 4, 5\}$ and $D = \{3, 4\}$ and define a binary relation S from C to D as follows:	a. 2 <i>S</i> 4 :False
	4 <i>S</i> 3 :True
For all $(x, y) \in C \times D$, $(x, y) \in S \Leftrightarrow x \ge y$.	(4,4)∈ <i>S</i>
a. Is 2 S 4? Is 4 S 3? Is $(4, 4) \in S$? Is $(3, 2) \in S$?	(3 <i>,</i> 2)∉ <i>S</i>
b. Write S as a set of ordered pairs.	b. S={(3,3),(4,3),(4,

3),(4,4),(5,3),(5,4)}

Solution: Define a binary relation R from R to R as follows: a. (2,4)∈ *R* (4,2)∉ *R* For all $(x, y) \in \mathbf{R} \times \mathbf{R}$, $x R y \Leftrightarrow y = x^2$. (-3) *R* 9 :True **a.** Is $(2, 4) \in R$? Is $(4, 2) \in R$? Is (-3) R 9? Is 9 R (-3)? 9 R (-3) : False

Let S be the set of all strings of a's and b's of length 4. Define a relation R on S as follows:

For all $s, t \in S$,

 $s R t \Leftrightarrow s$ has the same first two characters as t.

- **a.** Is abaa R abba?
 c. Is aaaa R aaab?
- b. Is aabb R bbaa?

Sol	11	ŀi	n	•
501	u			•

a.	True

- b. False
- c. True

 \succ Let A = {1,2,3,4}, Define a binary relation S from A to A as follows: *S* ={ (a,b) : a divides b }

Write S as a set of ordered pairs.

Solution:

 $S = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$

 \succ Let A = {1,2,3} and B = {0,1,2,4}, Define a binary relation S from A to B as follows: *S* ={ (a,b) : a = b }

Write S as a set of ordered pairs.

Solution:

 $S = \{(1,1), (2,2)\}$

Relations

Consider the following relations on {1, 2, 3, 4}: Determine the properties of these relations

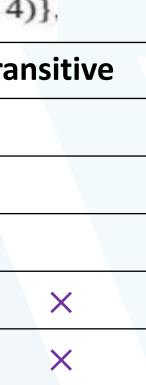
 $R_1 = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)\},\$

$$R_2 = \{(1, 1), (1, 2), (2, 1)\},\$$

- $R_3 = \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)\},\$
- $R_4 = \{(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)\},\$

 $R_5 = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)\},\$

	reflexive	irreflexive	symmetric	antisymmetric	asymmetric	tra
R1						
R2			×			
<i>R3</i>	×		×			
R4		×		×	×	
R5	×			×		



Consider these relations on the set of integers: Determine the properties of these relations

$$R_{1} = \{(a, b) \mid a \leq b\},\$$

$$R_{2} = \{(a, b) \mid a > b\},\$$

$$R_{3} = \{(a, b) \mid a = b \text{ or } a = -b\},\$$

$$R_{4} = \{(a, b) \mid a = b\},\$$

$$R_{5} = \{(a, b) \mid a = b + 1\},\$$

$$R_{6} = \{(a, b) \mid a + b \leq 3\}.$$

	reflexive	irreflexive	symmetric	antisymmetric	asymmetric	transitive
R1	×			×		×
R2		×		×	×	×
R3	×		×			×
R4	×		×	×		×
R5		×		×	×	
R6			×			

Note :

- •
- ٠

R5 is not transitive because ∃(2,1)∈R3 and (1,0) ∈R3 but (2,0)∉ R3

R6 is not transitive because $\exists (2,0)$ ∈ R6:2+0<=3 and (0,3) ∈ R6 :0+3<=3 but (2,3)∉ R6: 2+3>3

Represent relations using matrices

Represent each of these relations on $\{1, 2, 3\}$ with a matrix (with the elements of this set listed in increasing order).

a) $\{(1, 1), (1, 2), (1, 3)\}$ b) $\{(1, 2), (2, 1), (2, 2), (3, 3)\}$ c) $\{(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)\}$ d) $\{(1, 3), (3, 1)\}$

Solu	ution:	
a)	$\begin{bmatrix} 1 \ 1 \ 1 \\ 0 \ 0 \ 0 \end{bmatrix}$	b) [010] 110]
	L000J [111]	L001J [001]
c)		d) 000 100

Representing relations using matrices

Represent each of these relations on $\{1, 2, 3, 4\}$ with a matrix (with the elements of this set listed in increasing order).

a)
$$\{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)\}$$

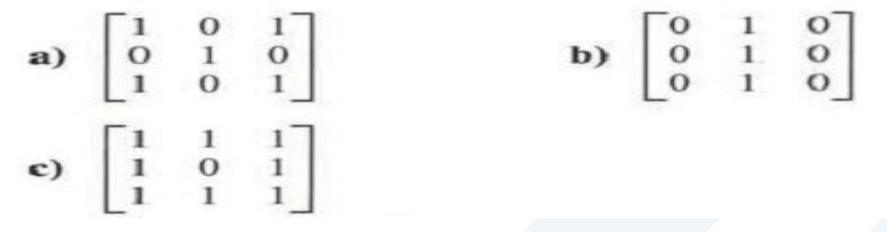
b) $\{(1, 1), (1, 4), (2, 2), (3, 3), (4, 1)\}$
c) $\{(1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (3, 4), (4, 1), (4, 2), (4, 3)\}$
d) $\{(2, 4), (2, 1), (2, 2), (2, 4)\}$

d)
$$\{(2, 4), (3, 1), (3, 2), (3, 4)\}$$

Solu	ution:	
a)	$\begin{bmatrix} 0 \ 1 \ 1 \ 1 \\ 0 \ 0 \ 1 \ 1 \\ 0 \ 0 \ 0 \ 1 \\ 0 \ 0 \ 0 \ 0 \end{bmatrix}$	b) $\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$
с)	$\begin{bmatrix} 0 \ 1 \ 1 \ 1 \\ 1 \ 0 \ 1 \ 1 \\ 1 \ 1 \ 0 \ 1 \\ 1 \ 1 \ 0 \ 1 \\ 1 \ 1 \ 1 \ 0 \end{bmatrix}$	d) $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

Representing relations using matrices

List the ordered pairs in the relations on $\{1, 2, 3\}$ corresponding to these matrices (where the rows and columns correspond to the integers listed in increasing order).



Solution:

- a) $\{(1,1),(1,3),(2,2),(3,1),(3,3)\}$
- b) $\{(1,2),(2,2),(3,2)\}$
- c) {(1,1),(1,2),(1,3),(2,1),(2,3),(3,1),(3,2),(3,3)}

Represent each of these relations on {1,2,3,4} with a matrix , and determine its properties.

- **a)** $\{(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)\}$ **b)** $\{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)\}$
- c) $\{(2, 4), (4, 2)\}$
- d) $\{(1, 2), (2, 3), (3, 4)\}$

Solution:

X

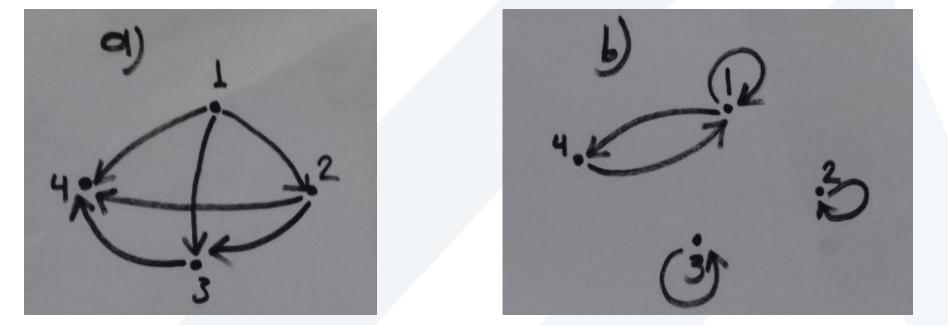
'ic	asymmetric	transitive
		×
		×
	×	

Representing relations with graph

represent these relations with graph.

a) $\{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)\}$ b) $\{(1, 1), (1, 4), (2, 2), (3, 3), (4, 1)\}$

Solution:



Properties of relation

Let A={-3,-1,2,4,5} and relation R is defined from A to A as follows R={ (a,b) : $ab \ge 0$ }

- 1- write R as a set of ordered pairs. 2- represent
- 3- represent the relation with graph.

2- represent the relation with matrix.

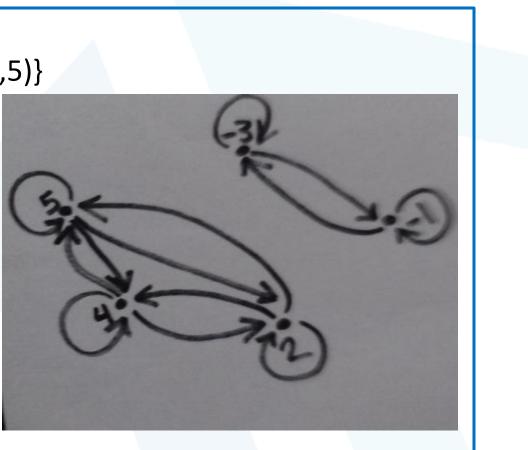
4- determine if R is equivalence relation

Solution:

 $\mathsf{R}=\{(-3,-3),(-3,-1),(-1,-3),(-1,-1),(2,2),(2,4),(2,5),(4,2),(4,4),(4,5),(5,2),(5,4),(5,5)\}$

$$M_R = \begin{bmatrix} 1 \ 1 \ 0 \ 0 \ 0 \\ 1 \ 1 \ 0 \ 0 \ 0 \\ 0 \ 0 \ 1 \ 1 \ 1 \\ 0 \ 0 \ 1 \ 1 \ 1 \\ 0 \ 0 \ 1 \ 1 \ 1 \end{bmatrix}$$

R is equivalence relation because it is reflexive, symmetric and transitive.



Properties of relation

Let A={-1,1,2,3,4} and relation R is defined from A to A as follows R={ (x,y): $x = y^2$ }

- 1- write R as a set of ordered pairs.
- 2- represent the relation with matrix.
- 3-represent the relation with graph.

4-determine if R is equivalence relation

5-determine if R is partial ordering relation

Solution:

```
\mathsf{R}{=}\{(1,{-}1),(1,1),(4,2)\}
```

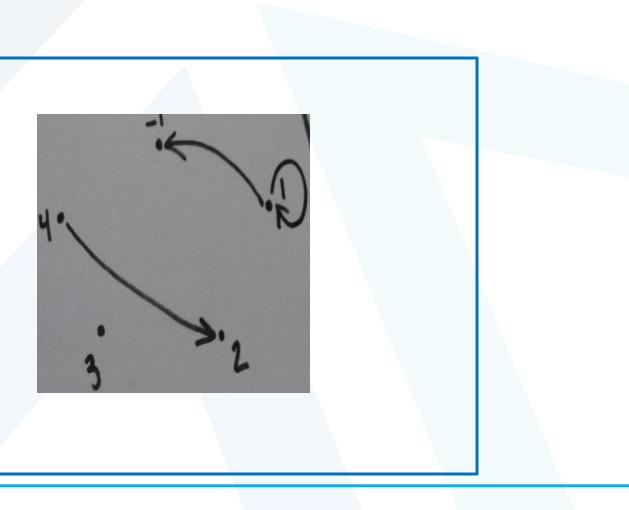
```
M_{P} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}
```

$$R = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

LOO100 R is not reflexive , antisymmetric , transitive

R is not equivalence relation

R is not partial ordering relation



In 1-5.a number of binary relations are defined on the set $A = \{0, 1, 2, 3\}$. For each relation:

- a. Draw the directed graph.
- b. Determine whether the relation is reflexive.
- c. Determine whether the relation is symmetric.
- d. Determine whether the relation is transitive.

Give a counterexample in each case in which the relation does not satisfy one of the properties.

1. $R_1 = \{(0, 0), (0, 1), (0, 3), (1, 1), (1, 0), (2, 3), (3, 3)\}$

2. $R_2 = \{(0, 0), (0, 1), (1, 1), (1, 2), (2, 2), (2, 3)\}$

3.
$$R_3 = \{(2, 3), (3, 2)\}$$

- 4. $R_4 = \{(1, 2), (2, 1), (1, 3), (3, 1)\}$
- 5. $R_5 = \{(0, 0), (0, 1), (0, 2), (1, 2)\}$

Let A={0,1,2,3,4} and relation R is defined from A to A as follows

- $R = \{(0, 0), (0, 4), (1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 0), (4, 4)\}$
- 1- represent the relation with matrix.
- 2- represent the relation with graph.
- 3- determine if R is equivalence relation

