
Unit-1
Multilevel Queue Scheduling

Multi-Processor Scheduling
Based on: Operating-system-concepts-Abraham Silberschatz- 10th edition

 2

Multilevel Queue
Scheduling

https://manara.edu.sy/

Multilevel queue
Separate queue for each distinct

priority, and priority scheduling

simply schedules the process in the

highest-priority queue.

It works well when priority

scheduling is combined with round-

robin: if there are multiple processes

in the highest-priority queue, they

are executed in round-robin order.

A process remains in the same queue

for the duration of its runtime.

 https://manara.edu.sy/

0T 1T 2T 3T 4T

T0

T1

T

5T 6T 7T

8T 9T 10T 11T

2-mT 1-mT mT

priority = 0

priority = 0

priority = 0

priority = 0

 4

Multilevel Queue Scheduling

System processes

Interactive processes

Interactive editing processes

Batch processes

Student processes

Highest

priority

Lowest

priority

• Ready queue is partitioned
into separate queues:

 foreground (interactive)
background (batch)

• Each queue has its own
scheduling algorithm

 foreground – RR
background – FCFS

• Scheduling must be done between the queues.
 Fixed priority scheduling; (i.e., serve all from foreground then from background). Possibility

of starvation.
 Time slice – each queue gets a certain amount of CPU time which it can schedule amongst its

processes; i.e., 80% to foreground in RR
 20% to background in FCFS

• Processes are permanently assigned to a queue on entry to the system.
Processes do not move between queues

https://manara.edu.sy/

 5

Multilevel Feedback Queue

A process can move between the various queues; aging can be implemented
this way.

Multilevel-feedback-queue scheduler defined by the following parameters:

number of queues

scheduling algorithms for each queue

method used to determine when to upgrade a process

method used to determine when to demote a process

method used to determine which queue a process will enter when that
process needs service

https://manara.edu.sy/

 6

Example of Multilevel Feedback Queue

Three queues:

Q0 – time quantum 8 milliseconds

Q1 – time quantum 16 milliseconds

Q2 – FCFS

Scheduling

A new job enters queue Q0 which is served RR. When it gains CPU, job
receives 8 milliseconds. If it does not finish in 8 milliseconds, job is
moved to queue Q1.

At Q1 job is again served RR and receives 16 additional milliseconds. If it
still does not complete, it is preempted and moved to queue Q2.

https://manara.edu.sy/

 7

Example of Multilevel Feedback Queue

FCFS

12

7

6

11

21

15

11

19

30

26

25

1P

2P

3P

4P

5P

6P

7P

8P

229P

10P

11P

12P

1Q 2Q 3Q

8 7 6 8

16 15 11 16 16 4 3

30 26 25 5 3 6

P1 P2 P3 P4

p1 P4P5 P6 P7 P8 P9
Quantum=16

Quantum=8

P10 P11 P12 P5 P8 P9

P2 P3

P1 P4

P6 P7

P5 P8 P9

p1 P4

P10 P11 P12 P5 P8 P9

https://manara.edu.sy/

CPU scheduling more complex when multiple CPUs are available

Multiprocess may be any one of the following architectures:

Multicore CPUs

Multithreaded cores

(non-uniform memory access)NUMA systems

Heterogeneous multiprocessing

 https://manara.edu.sy/

Approaches to Multiple-Processor Scheduling

Symmetric multiprocessing

(SMP) is where each processor is

self scheduling.

All threads may be in a common

ready queue (a)

Each processor may have its

own private queue of threads (b)

 https://manara.edu.sy/

Multicore Processors

Memory stall can occur because of a cache miss (accessing data that are not in cache

memory. In this scenario, the processor can spend up to 50 percent of its time waiting

for data to become available from memory

Multiple threads per core also growing

Takes advantage of memory stall to make progress on another thread

while memory retrieve happens

 https://manara.edu.sy/

Multithreaded Multicore System

Each core has > 1 hardware threads.

If one thread has a memory stall, switch to another thread!

 https://manara.edu.sy/

Multithreaded Multicore System

Chip-multithreading (CMT)

assigns each core multiple

hardware threads. (Intel refers to

this as hyperthreading.)

On a quad-core system with 2

hardware threads per core, the

operating system sees 8 logical

processors.

 https://manara.edu.sy/

Multithreaded Multicore System

Two levels of scheduling:

1. The operating system

deciding which software

thread to run on a logical

CPU

2.How each core decides

which hardware thread to

run on the physical core.

 https://manara.edu.sy/

Multiple-Processor Scheduling – Load Balancing

If SMP, need to keep all CPUs loaded for efficiency

Load balancing attempts to keep workload evenly distributed

Push migration – periodic task checks load on each processor,

and if found pushes task from overloaded CPU to other CPUs

Pull migration – idle processors pulls waiting task from busy

processor

 https://manara.edu.sy/

Multiple-Processor Scheduling – Processor Affinity

When a thread has been running on one processor, the cache contents of that

processor stores the memory accesses by that thread.

We refer to this as a thread having affinity for a processor (i.e. “processor affinity”)

Load balancing may affect processor affinity as a thread may be moved from one

processor to another to balance loads, yet that thread loses the contents of what it

had in the cache of the processor it was moved off of.

Soft affinity – the operating system attempts to keep a thread running on the same

processor, but no guarantees.

Hard affinity – allows a process to specify a set of processors it may run on.

 https://manara.edu.sy/

NUMA and CPU Scheduling

If the operating system is NUMA-aware, it will assign
memory closes to the CPU the thread is running on.

 https://manara.edu.sy/

Heterogeneous Multiprocessing (HMP)

In some systems (Mobile), cores run the same instruction set, yet vary in terms of their

clock speed and power management, including the ability to adjust the power

consumption of a core to the point of idling the core.

The intention behind HMP is to better manage power consumption by assigning tasks

to certain cores based upon the specific demands of the task (Mobile).

For ARM (Advanced RISC Machine) processors that support it, this type of architecture

is known as big.LITTLE (Mobile, Windows 10)

Big cores consume greater energy and therefore should only be used for short periods

of time.

Likewise, little cores use less energy and can therefore be used for longer periods.

 https://manara.edu.sy/

Real-Time CPU Scheduling

The most important feature of a real-time operating system is to respond

immediately to a real-time process as soon as that process requires the CPU.

In general, we can distinguish between

Soft real-time systems – Critical real-time tasks have the highest priority, but

no guarantee as to when tasks will be scheduled

Hard real-time systems – task must be serviced by its deadline

 Usually, different events have different latency requirements. Two types of

latencies affect performance

1.Interrupt latency

2.Dispatch latency

 https://manara.edu.sy/

Real-Time CPU Scheduling - Minimizing Latency

The system is typically waiting for an

event in real time to occur.

Events may arise either in software or in

hardware.

When an event occurs, the system must

respond to and service it as quickly as

possible.

Event latency: the amount of time that

elapses from when an event occurs to

when it is serviced.

 https://manara.edu.sy/

Interrupt Latency

1.Interrupt latency – time from arrival of interrupt to start of routine that
services interrupt

 https://manara.edu.sy/

Dispatch Latency

Conflict phase of dispatch latency:

1.Preemption of any process running in kernel mode

2.Release by low-priority process of resources needed by high-priority processes

2- Dispatch latency: The
amount of time required
for the scheduling
dispatcher to stop one
process and start another.

 https://manara.edu.sy/

Priority-based Scheduling

The scheduler for a real-time operating system must support a priority

based algorithm with preemption.

Priority-based scheduling algorithms assign each process a priority based

on its importance; more important tasks are assigned higher priorities than

those deemed less important.

If the scheduler also supports preemption, a process currently running on

the CPU will be preempted if a higher-priority process becomes available to

run.

 https://manara.edu.sy/

Priority-based Scheduling- Notes

Note that providing a preemptive, priority-based scheduler only

guarantees soft real-time functionality.

Hard real-time systems must further guarantee that real-time tasks will be

serviced in accord with their deadline requirements, and making such

guarantees requires additional scheduling features.

 https://manara.edu.sy/

Priority-based Scheduling = define certain
characteristics of the processes

Periodic process:

ones require CPU at constant intervals

Has processing time t, deadline d, period p

0 ≤ t ≤ d ≤ p

Rate of periodic task is 1/p

 https://manara.edu.sy/

Priority-based Scheduling = define certain
characteristics of the processes

Schedulers can assign priorities according to a process’s deadline or rate

requirements.

A process may have to announce its deadline requirements to the scheduler. Then,

using a technique known as an admission-control algorithm.

The scheduler does one of two things:

It either admits the process, guaranteeing that the process will complete on time,

or rejects the request as impossible if it cannot guarantee that the task will be

serviced by its deadline.

 https://manara.edu.sy/

Rate Monotonic Scheduling

A priority is assigned based on the inverse of its period

Shorter periods = higher priority;

Longer periods = lower priority

P1 is assigned a higher priority than P2.

 https://manara.edu.sy/

Rate Monotonic Scheduling
p1 = 50 and p2 = 100.

t1 = 20 for P1 and t2 = 35 for P2

If we measure the CPU utilization of a process Pi as the ratio of its burst to its period—

ti∕pi —the CPU utilization of P1 is 20∕50 = 0.40 and that of P2 is 35∕100 = 0.35, for a

total CPU utilization of 75 percent.

Therefore, it seems we can schedule these tasks in such a way that both meet their

deadlines and still leave the CPU with available cycles.

The worst-case CPU utilization for scheduling N processes is

N(21∕N − 1).

 https://manara.edu.sy/

Rate Montonic Scheduling
When we assign P2 a higher priority than P1.

When we assign P1 a higher priority than P2.

if a set of processes cannot be scheduled by this algorithm, it cannot be scheduled by any
other algorithm that assigns static priorities.

 https://manara.edu.sy/

Missed Deadlines with Rate Monotonic Scheduling

p1 = 50 and p2 = 80.

t1 = 25 for P1 and t2 = 35 for P2

The total CPU utilization of the two processes is (25∕50) + (35∕80) =0.94, and it

therefore seems logical that the two processes could be scheduled and still leave the

CPU with 6 percent available time.

Process P2 misses finishing its deadline at time 80

 https://manara.edu.sy/

Earliest Deadline First Scheduling (EDF)

Priorities are assigned dynamically according to

deadlines:

the earlier the deadline, the higher the

priority;

the later the deadline, the lower the priority

p1 = 50 and p2 = 80.

t1 = 25 for P1 and t2 = 35 for P2

Rate-monotonic scheduling allows

P1 to preempt P2 at the beginning

of its next period at time 50, EDF

scheduling allows process P2 to

continue running. P2 now has a

higher priority than P1 because its

next deadline (at time 80) is earlier

than that of P1 (at time 100).

 https://manara.edu.sy/

Proportional Share Scheduling
T shares are allocated among all processes in the system

An application receives N shares where N < T

This ensures each application will receive N / T of the total processor time

assume that a total of T = 100 shares is to be divided among three processes,

A, B, and C. A is assigned 50 shares, B is assigned 15 shares, and C is assigned

20 shares. A will have 50 percent of total processor time, B will have 15

percent, and C will have 20 percent.

An admission-control policy will admit a client requesting a particular number

of shares only if sufficient shares are available. In our current example, if a new

process D requested 30 shares, the admission controller would deny D entry

into the system.

 https://manara.edu.sy/

